{"title":"霍尔电流和辐射对锥盘系统中输送金纳米颗粒血流的影响","authors":"Aarti Manglesh, Rajeev Kumar, Tejinder Kumar","doi":"10.1007/s12043-025-02980-x","DOIUrl":null,"url":null,"abstract":"<div><p>In the cone–disk system, the apex of the cone is in contact with the disk, making a conical region, in which the fluid flow is analysed. This type of flow problem has a variety of biomedical application including DNA sequencing, biochemical detection, cell analysis, conical diffusers, viscosimeters, etc. The effect of Hall current and radiation on the flow of blood containing gold nanoparticles is theoretically analysed in a cone–disk system for a single-phase nanofluid model. Four configurations of the cone–disk system, including stationary disk and rotating cone, stationary cone and rotating disk, co-rotation of disk and cone and counter-rotation of disk and cone, are studied for the gap angle <span>\\(\\frac{\\pi }{4}\\)</span>. The non-linear partial differential equations describing three-dimensional axisymmetric flow in a cone–disk system are converted into nonlinear ordinary differential equations using the one-parameter Lie group approach. The self-similar model is then solved numerically using the bvp5c package of MATLAB and shown graphically to analyse the influence of various parameters involved in the study for all four configurations of the cone–disk system. It is observed that rotation of the disk/cone gives rise to high centrifugal forces resulting in an outward radial flow. Further, it is noted that Hall current enhances the velocity and radiation parameter reduces the temperature.\n</p></div>","PeriodicalId":743,"journal":{"name":"Pramana","volume":"99 3","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of Hall current and radiation on the blood flow conveying gold nanoparticles in a cone–disk system\",\"authors\":\"Aarti Manglesh, Rajeev Kumar, Tejinder Kumar\",\"doi\":\"10.1007/s12043-025-02980-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In the cone–disk system, the apex of the cone is in contact with the disk, making a conical region, in which the fluid flow is analysed. This type of flow problem has a variety of biomedical application including DNA sequencing, biochemical detection, cell analysis, conical diffusers, viscosimeters, etc. The effect of Hall current and radiation on the flow of blood containing gold nanoparticles is theoretically analysed in a cone–disk system for a single-phase nanofluid model. Four configurations of the cone–disk system, including stationary disk and rotating cone, stationary cone and rotating disk, co-rotation of disk and cone and counter-rotation of disk and cone, are studied for the gap angle <span>\\\\(\\\\frac{\\\\pi }{4}\\\\)</span>. The non-linear partial differential equations describing three-dimensional axisymmetric flow in a cone–disk system are converted into nonlinear ordinary differential equations using the one-parameter Lie group approach. The self-similar model is then solved numerically using the bvp5c package of MATLAB and shown graphically to analyse the influence of various parameters involved in the study for all four configurations of the cone–disk system. It is observed that rotation of the disk/cone gives rise to high centrifugal forces resulting in an outward radial flow. Further, it is noted that Hall current enhances the velocity and radiation parameter reduces the temperature.\\n</p></div>\",\"PeriodicalId\":743,\"journal\":{\"name\":\"Pramana\",\"volume\":\"99 3\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-08-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pramana\",\"FirstCategoryId\":\"4\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12043-025-02980-x\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pramana","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1007/s12043-025-02980-x","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Effect of Hall current and radiation on the blood flow conveying gold nanoparticles in a cone–disk system
In the cone–disk system, the apex of the cone is in contact with the disk, making a conical region, in which the fluid flow is analysed. This type of flow problem has a variety of biomedical application including DNA sequencing, biochemical detection, cell analysis, conical diffusers, viscosimeters, etc. The effect of Hall current and radiation on the flow of blood containing gold nanoparticles is theoretically analysed in a cone–disk system for a single-phase nanofluid model. Four configurations of the cone–disk system, including stationary disk and rotating cone, stationary cone and rotating disk, co-rotation of disk and cone and counter-rotation of disk and cone, are studied for the gap angle \(\frac{\pi }{4}\). The non-linear partial differential equations describing three-dimensional axisymmetric flow in a cone–disk system are converted into nonlinear ordinary differential equations using the one-parameter Lie group approach. The self-similar model is then solved numerically using the bvp5c package of MATLAB and shown graphically to analyse the influence of various parameters involved in the study for all four configurations of the cone–disk system. It is observed that rotation of the disk/cone gives rise to high centrifugal forces resulting in an outward radial flow. Further, it is noted that Hall current enhances the velocity and radiation parameter reduces the temperature.
期刊介绍:
Pramana - Journal of Physics is a monthly research journal in English published by the Indian Academy of Sciences in collaboration with Indian National Science Academy and Indian Physics Association. The journal publishes refereed papers covering current research in Physics, both original contributions - research papers, brief reports or rapid communications - and invited reviews. Pramana also publishes special issues devoted to advances in specific areas of Physics and proceedings of select high quality conferences.