基于知识图谱实体抽取任务的电力调度模型研究

Q2 Energy
Yufeng Chai, Bo Zhang, Min Wang, Zhongying Zhao
{"title":"基于知识图谱实体抽取任务的电力调度模型研究","authors":"Yufeng Chai,&nbsp;Bo Zhang,&nbsp;Min Wang,&nbsp;Zhongying Zhao","doi":"10.1186/s42162-025-00559-9","DOIUrl":null,"url":null,"abstract":"<div><p>This paper proposes an integrated knowledge graph-based power dispatching model for emergency response, combining Markov chain-based text preprocessing, entity-extracted knowledge graph construction, and case-based reasoning optimization - a novel approach that enhances both real-time decision-making and system security. First, a Markov chain-based method effectively removes redundant information from power anomaly event texts, improving entity extraction accuracy. Subsequently, a knowledge graph is constructed to precisely identify key entities, enabling the creation of a structured power emergency plan database. Finally, case-based reasoning matches real-time anomalies with historical cases, facilitating the rapid generation of optimal dispatching schemes. The experiments demonstrate that the proposed model achieves high efficiency (with an average dispatching time &lt; 50 s) and reliability (exhibiting a failure blowout rate below 0.1%), thereby significantly improving power grid safety. The proposed framework advances intelligent power system dispatching by integrating text analytics, knowledge representation, and adaptive reasoning.</p></div>","PeriodicalId":538,"journal":{"name":"Energy Informatics","volume":"8 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://energyinformatics.springeropen.com/counter/pdf/10.1186/s42162-025-00559-9","citationCount":"0","resultStr":"{\"title\":\"Research on power dispatching model based on knowledge graph entity extraction task\",\"authors\":\"Yufeng Chai,&nbsp;Bo Zhang,&nbsp;Min Wang,&nbsp;Zhongying Zhao\",\"doi\":\"10.1186/s42162-025-00559-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper proposes an integrated knowledge graph-based power dispatching model for emergency response, combining Markov chain-based text preprocessing, entity-extracted knowledge graph construction, and case-based reasoning optimization - a novel approach that enhances both real-time decision-making and system security. First, a Markov chain-based method effectively removes redundant information from power anomaly event texts, improving entity extraction accuracy. Subsequently, a knowledge graph is constructed to precisely identify key entities, enabling the creation of a structured power emergency plan database. Finally, case-based reasoning matches real-time anomalies with historical cases, facilitating the rapid generation of optimal dispatching schemes. The experiments demonstrate that the proposed model achieves high efficiency (with an average dispatching time &lt; 50 s) and reliability (exhibiting a failure blowout rate below 0.1%), thereby significantly improving power grid safety. The proposed framework advances intelligent power system dispatching by integrating text analytics, knowledge representation, and adaptive reasoning.</p></div>\",\"PeriodicalId\":538,\"journal\":{\"name\":\"Energy Informatics\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-08-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://energyinformatics.springeropen.com/counter/pdf/10.1186/s42162-025-00559-9\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s42162-025-00559-9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Energy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Informatics","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1186/s42162-025-00559-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Energy","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种基于马尔可夫链的文本预处理、基于实体提取的知识图构建和基于案例的推理优化相结合的应急电力调度模型,该模型既提高了决策实时性,又提高了系统的安全性。首先,基于马尔可夫链的方法有效地去除电力异常事件文本中的冗余信息,提高实体提取的准确性;构建知识图谱,精确识别关键实体,建立结构化的电力应急预案数据库。最后,基于案例的推理将实时异常与历史案例相匹配,便于快速生成最优调度方案。实验表明,该模型具有较高的效率(平均调度时间为50 s)和可靠性(故障井喷率低于0.1%),显著提高了电网的安全性。该框架将文本分析、知识表示和自适应推理相结合,推进电力系统智能调度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Research on power dispatching model based on knowledge graph entity extraction task

This paper proposes an integrated knowledge graph-based power dispatching model for emergency response, combining Markov chain-based text preprocessing, entity-extracted knowledge graph construction, and case-based reasoning optimization - a novel approach that enhances both real-time decision-making and system security. First, a Markov chain-based method effectively removes redundant information from power anomaly event texts, improving entity extraction accuracy. Subsequently, a knowledge graph is constructed to precisely identify key entities, enabling the creation of a structured power emergency plan database. Finally, case-based reasoning matches real-time anomalies with historical cases, facilitating the rapid generation of optimal dispatching schemes. The experiments demonstrate that the proposed model achieves high efficiency (with an average dispatching time < 50 s) and reliability (exhibiting a failure blowout rate below 0.1%), thereby significantly improving power grid safety. The proposed framework advances intelligent power system dispatching by integrating text analytics, knowledge representation, and adaptive reasoning.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Energy Informatics
Energy Informatics Computer Science-Computer Networks and Communications
CiteScore
5.50
自引率
0.00%
发文量
34
审稿时长
5 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信