{"title":"基于知识图谱实体抽取任务的电力调度模型研究","authors":"Yufeng Chai, Bo Zhang, Min Wang, Zhongying Zhao","doi":"10.1186/s42162-025-00559-9","DOIUrl":null,"url":null,"abstract":"<div><p>This paper proposes an integrated knowledge graph-based power dispatching model for emergency response, combining Markov chain-based text preprocessing, entity-extracted knowledge graph construction, and case-based reasoning optimization - a novel approach that enhances both real-time decision-making and system security. First, a Markov chain-based method effectively removes redundant information from power anomaly event texts, improving entity extraction accuracy. Subsequently, a knowledge graph is constructed to precisely identify key entities, enabling the creation of a structured power emergency plan database. Finally, case-based reasoning matches real-time anomalies with historical cases, facilitating the rapid generation of optimal dispatching schemes. The experiments demonstrate that the proposed model achieves high efficiency (with an average dispatching time < 50 s) and reliability (exhibiting a failure blowout rate below 0.1%), thereby significantly improving power grid safety. The proposed framework advances intelligent power system dispatching by integrating text analytics, knowledge representation, and adaptive reasoning.</p></div>","PeriodicalId":538,"journal":{"name":"Energy Informatics","volume":"8 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://energyinformatics.springeropen.com/counter/pdf/10.1186/s42162-025-00559-9","citationCount":"0","resultStr":"{\"title\":\"Research on power dispatching model based on knowledge graph entity extraction task\",\"authors\":\"Yufeng Chai, Bo Zhang, Min Wang, Zhongying Zhao\",\"doi\":\"10.1186/s42162-025-00559-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper proposes an integrated knowledge graph-based power dispatching model for emergency response, combining Markov chain-based text preprocessing, entity-extracted knowledge graph construction, and case-based reasoning optimization - a novel approach that enhances both real-time decision-making and system security. First, a Markov chain-based method effectively removes redundant information from power anomaly event texts, improving entity extraction accuracy. Subsequently, a knowledge graph is constructed to precisely identify key entities, enabling the creation of a structured power emergency plan database. Finally, case-based reasoning matches real-time anomalies with historical cases, facilitating the rapid generation of optimal dispatching schemes. The experiments demonstrate that the proposed model achieves high efficiency (with an average dispatching time < 50 s) and reliability (exhibiting a failure blowout rate below 0.1%), thereby significantly improving power grid safety. The proposed framework advances intelligent power system dispatching by integrating text analytics, knowledge representation, and adaptive reasoning.</p></div>\",\"PeriodicalId\":538,\"journal\":{\"name\":\"Energy Informatics\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-08-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://energyinformatics.springeropen.com/counter/pdf/10.1186/s42162-025-00559-9\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s42162-025-00559-9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Energy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Informatics","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1186/s42162-025-00559-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Energy","Score":null,"Total":0}
Research on power dispatching model based on knowledge graph entity extraction task
This paper proposes an integrated knowledge graph-based power dispatching model for emergency response, combining Markov chain-based text preprocessing, entity-extracted knowledge graph construction, and case-based reasoning optimization - a novel approach that enhances both real-time decision-making and system security. First, a Markov chain-based method effectively removes redundant information from power anomaly event texts, improving entity extraction accuracy. Subsequently, a knowledge graph is constructed to precisely identify key entities, enabling the creation of a structured power emergency plan database. Finally, case-based reasoning matches real-time anomalies with historical cases, facilitating the rapid generation of optimal dispatching schemes. The experiments demonstrate that the proposed model achieves high efficiency (with an average dispatching time < 50 s) and reliability (exhibiting a failure blowout rate below 0.1%), thereby significantly improving power grid safety. The proposed framework advances intelligent power system dispatching by integrating text analytics, knowledge representation, and adaptive reasoning.