混合高效qnet脑肿瘤检测使用MRI图像

IF 4.9 3区 计算机科学 Q1 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
Jayasri Kotti , M. Belsam Jeba Ananth , Rajeshkannan Regunathan
{"title":"混合高效qnet脑肿瘤检测使用MRI图像","authors":"Jayasri Kotti ,&nbsp;M. Belsam Jeba Ananth ,&nbsp;Rajeshkannan Regunathan","doi":"10.1016/j.compeleceng.2025.110601","DOIUrl":null,"url":null,"abstract":"<div><div>Brain tumors (BT) result from the abnormal growth of brain cells and are associated with high morbidity and mortality rates. Malignant tumors spread quickly, while early-stage tumors grow slowly. Detection is challenging due to their varied sizes and shapes. To address this, EfficientQNet is proposed for effective BT detection using MRI. The process starts with preprocessing using the Fuzzy Local Information C-Means clustering model (FLICM) for Region of Interest (ROI) extraction and skull stripping, followed by SegNet for segmentation and image augmentation. Subsequently, texture features such as Correlation, Angular Second Moment, Inverse Difference Moment, Contrast, and Discrete Cosine Transform (DCT) with Fuzzy Local Binary Pattern (FLBP) are extracted. Finally, EfficientQNet is used for detection. Here, EfficientQNet combines the existing technologies, such as EfficientNet-B3-attn-2 with Deep Q-Learning to optimize layer configurations, achieving superior performance in brain tumor detection. Furthermore, EfficientQNet achieved an accuracy of 90.3 %, sensitivity of 93.2 %, specificity of 91.2 %, precision of 92.4 %, and F1-score of 92.8 %, with a loss of 9.7 %. The accuracy improvement over Fine-tuned Visual Geometry Group 16 (Fine-tuned VGG16), EfficientNet B0, Convolutional Neural Network-Long Short-Term Memory (CNN-LSTM), Ultra-Light Brain Tumor Detection (UL-BTD), Deep Learning-based Brain Tumor Detection and Classification using Magnetic Resonance Imaging (DLBTDC-MRI), and Parallel Deep Convolutional Neural Network (PDCNN) methods is 12.2 %, 9.63 %, 6.31 %, 5.42 %, 2.65 %, and 2.54 %, respectively.</div></div>","PeriodicalId":50630,"journal":{"name":"Computers & Electrical Engineering","volume":"127 ","pages":"Article 110601"},"PeriodicalIF":4.9000,"publicationDate":"2025-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hybrid EfficientQNet for brain tumor detection using MRI images\",\"authors\":\"Jayasri Kotti ,&nbsp;M. Belsam Jeba Ananth ,&nbsp;Rajeshkannan Regunathan\",\"doi\":\"10.1016/j.compeleceng.2025.110601\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Brain tumors (BT) result from the abnormal growth of brain cells and are associated with high morbidity and mortality rates. Malignant tumors spread quickly, while early-stage tumors grow slowly. Detection is challenging due to their varied sizes and shapes. To address this, EfficientQNet is proposed for effective BT detection using MRI. The process starts with preprocessing using the Fuzzy Local Information C-Means clustering model (FLICM) for Region of Interest (ROI) extraction and skull stripping, followed by SegNet for segmentation and image augmentation. Subsequently, texture features such as Correlation, Angular Second Moment, Inverse Difference Moment, Contrast, and Discrete Cosine Transform (DCT) with Fuzzy Local Binary Pattern (FLBP) are extracted. Finally, EfficientQNet is used for detection. Here, EfficientQNet combines the existing technologies, such as EfficientNet-B3-attn-2 with Deep Q-Learning to optimize layer configurations, achieving superior performance in brain tumor detection. Furthermore, EfficientQNet achieved an accuracy of 90.3 %, sensitivity of 93.2 %, specificity of 91.2 %, precision of 92.4 %, and F1-score of 92.8 %, with a loss of 9.7 %. The accuracy improvement over Fine-tuned Visual Geometry Group 16 (Fine-tuned VGG16), EfficientNet B0, Convolutional Neural Network-Long Short-Term Memory (CNN-LSTM), Ultra-Light Brain Tumor Detection (UL-BTD), Deep Learning-based Brain Tumor Detection and Classification using Magnetic Resonance Imaging (DLBTDC-MRI), and Parallel Deep Convolutional Neural Network (PDCNN) methods is 12.2 %, 9.63 %, 6.31 %, 5.42 %, 2.65 %, and 2.54 %, respectively.</div></div>\",\"PeriodicalId\":50630,\"journal\":{\"name\":\"Computers & Electrical Engineering\",\"volume\":\"127 \",\"pages\":\"Article 110601\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2025-08-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & Electrical Engineering\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0045790625005440\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Electrical Engineering","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0045790625005440","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

摘要

脑肿瘤是由脑细胞的异常生长引起的,发病率和死亡率都很高。恶性肿瘤扩散迅速,而早期肿瘤生长缓慢。由于它们的大小和形状各不相同,检测具有挑战性。为了解决这个问题,高效qnet被提出用于MRI有效的BT检测。该过程首先使用模糊局部信息c均值聚类模型(FLICM)进行预处理,用于感兴趣区域(ROI)提取和颅骨剥离,然后使用SegNet进行分割和图像增强。随后,提取纹理特征,如相关性、角秒矩、逆差矩、对比度和模糊局部二值模式(FLBP)的离散余弦变换(DCT)。最后,使用EfficientQNet进行检测。在此,EfficientQNet将现有技术(如EfficientNet-B3-attn-2)与Deep Q-Learning相结合,优化了层构型,在脑肿瘤检测方面取得了卓越的性能。此外,有效率qnet的准确率为90.3%,灵敏度为93.2%,特异性为91.2%,精密度为92.4%,f1评分为92.8%,损失为9.7%。与fine - tuning Visual Geometry Group 16 (fine - tuning VGG16)、EfficientNet B0、卷积神经网络-长短期记忆(CNN-LSTM)、超轻脑肿瘤检测(UL-BTD)、基于深度学习的磁共振脑肿瘤检测与分类(DLBTDC-MRI)和并行深度卷积神经网络(PDCNN)方法相比,准确率分别提高了12.2%、9.63%、6.31%、5.42%、2.65%和2.54%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hybrid EfficientQNet for brain tumor detection using MRI images
Brain tumors (BT) result from the abnormal growth of brain cells and are associated with high morbidity and mortality rates. Malignant tumors spread quickly, while early-stage tumors grow slowly. Detection is challenging due to their varied sizes and shapes. To address this, EfficientQNet is proposed for effective BT detection using MRI. The process starts with preprocessing using the Fuzzy Local Information C-Means clustering model (FLICM) for Region of Interest (ROI) extraction and skull stripping, followed by SegNet for segmentation and image augmentation. Subsequently, texture features such as Correlation, Angular Second Moment, Inverse Difference Moment, Contrast, and Discrete Cosine Transform (DCT) with Fuzzy Local Binary Pattern (FLBP) are extracted. Finally, EfficientQNet is used for detection. Here, EfficientQNet combines the existing technologies, such as EfficientNet-B3-attn-2 with Deep Q-Learning to optimize layer configurations, achieving superior performance in brain tumor detection. Furthermore, EfficientQNet achieved an accuracy of 90.3 %, sensitivity of 93.2 %, specificity of 91.2 %, precision of 92.4 %, and F1-score of 92.8 %, with a loss of 9.7 %. The accuracy improvement over Fine-tuned Visual Geometry Group 16 (Fine-tuned VGG16), EfficientNet B0, Convolutional Neural Network-Long Short-Term Memory (CNN-LSTM), Ultra-Light Brain Tumor Detection (UL-BTD), Deep Learning-based Brain Tumor Detection and Classification using Magnetic Resonance Imaging (DLBTDC-MRI), and Parallel Deep Convolutional Neural Network (PDCNN) methods is 12.2 %, 9.63 %, 6.31 %, 5.42 %, 2.65 %, and 2.54 %, respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computers & Electrical Engineering
Computers & Electrical Engineering 工程技术-工程:电子与电气
CiteScore
9.20
自引率
7.00%
发文量
661
审稿时长
47 days
期刊介绍: The impact of computers has nowhere been more revolutionary than in electrical engineering. The design, analysis, and operation of electrical and electronic systems are now dominated by computers, a transformation that has been motivated by the natural ease of interface between computers and electrical systems, and the promise of spectacular improvements in speed and efficiency. Published since 1973, Computers & Electrical Engineering provides rapid publication of topical research into the integration of computer technology and computational techniques with electrical and electronic systems. The journal publishes papers featuring novel implementations of computers and computational techniques in areas like signal and image processing, high-performance computing, parallel processing, and communications. Special attention will be paid to papers describing innovative architectures, algorithms, and software tools.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信