{"title":"关于模糊分数的形成","authors":"Naser Zamani , Zeinab Rezaei","doi":"10.1016/j.fss.2025.109562","DOIUrl":null,"url":null,"abstract":"<div><div>Let <em>R</em> be a commutative ring, <em>S</em> a multiplicatively closed subset of <em>R</em> and let <span><math><msup><mrow><mi>S</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><mi>R</mi></math></span> be the ring of fractions over <em>S</em>. For a typical fuzzy submodule <em>η</em> of the <em>R</em>-module <em>M</em>, the fuzzy fractions <span><math><msup><mrow><mi>S</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><mi>η</mi></math></span> of <em>μ</em> is a fuzzy submodule of the <span><math><msup><mrow><mi>S</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><mi>R</mi></math></span>-module (of fractions) <span><math><msup><mrow><mi>S</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><mi>M</mi></math></span>. In this note, it is shown that if <span><math><mi>μ</mi><mo>⊆</mo><mi>λ</mi></math></span> are two fuzzy submodules of <em>M</em>, both having sup property, then there exist a (fuzzy sense) isomorphism between <span><math><msup><mrow><mi>S</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><mo>(</mo><mi>λ</mi><mo>/</mo><mi>μ</mi><mo>)</mo></math></span> and <span><math><msup><mrow><mi>S</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><mi>λ</mi><mo>/</mo><msup><mrow><mi>S</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><mi>μ</mi></math></span>. Then, it is seen that local global principle holds true for fuzzy submodules. Furthermore, after providing some auxiliary results, it is proved that under some mild conditions, fuzzy fractions formation commutes with fuzzy residual quotient.</div></div>","PeriodicalId":55130,"journal":{"name":"Fuzzy Sets and Systems","volume":"520 ","pages":"Article 109562"},"PeriodicalIF":2.7000,"publicationDate":"2025-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On fuzzy fractions formation\",\"authors\":\"Naser Zamani , Zeinab Rezaei\",\"doi\":\"10.1016/j.fss.2025.109562\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Let <em>R</em> be a commutative ring, <em>S</em> a multiplicatively closed subset of <em>R</em> and let <span><math><msup><mrow><mi>S</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><mi>R</mi></math></span> be the ring of fractions over <em>S</em>. For a typical fuzzy submodule <em>η</em> of the <em>R</em>-module <em>M</em>, the fuzzy fractions <span><math><msup><mrow><mi>S</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><mi>η</mi></math></span> of <em>μ</em> is a fuzzy submodule of the <span><math><msup><mrow><mi>S</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><mi>R</mi></math></span>-module (of fractions) <span><math><msup><mrow><mi>S</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><mi>M</mi></math></span>. In this note, it is shown that if <span><math><mi>μ</mi><mo>⊆</mo><mi>λ</mi></math></span> are two fuzzy submodules of <em>M</em>, both having sup property, then there exist a (fuzzy sense) isomorphism between <span><math><msup><mrow><mi>S</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><mo>(</mo><mi>λ</mi><mo>/</mo><mi>μ</mi><mo>)</mo></math></span> and <span><math><msup><mrow><mi>S</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><mi>λ</mi><mo>/</mo><msup><mrow><mi>S</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><mi>μ</mi></math></span>. Then, it is seen that local global principle holds true for fuzzy submodules. Furthermore, after providing some auxiliary results, it is proved that under some mild conditions, fuzzy fractions formation commutes with fuzzy residual quotient.</div></div>\",\"PeriodicalId\":55130,\"journal\":{\"name\":\"Fuzzy Sets and Systems\",\"volume\":\"520 \",\"pages\":\"Article 109562\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-08-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fuzzy Sets and Systems\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S016501142500301X\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fuzzy Sets and Systems","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S016501142500301X","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
Let R be a commutative ring, S a multiplicatively closed subset of R and let be the ring of fractions over S. For a typical fuzzy submodule η of the R-module M, the fuzzy fractions of μ is a fuzzy submodule of the -module (of fractions) . In this note, it is shown that if are two fuzzy submodules of M, both having sup property, then there exist a (fuzzy sense) isomorphism between and . Then, it is seen that local global principle holds true for fuzzy submodules. Furthermore, after providing some auxiliary results, it is proved that under some mild conditions, fuzzy fractions formation commutes with fuzzy residual quotient.
期刊介绍:
Since its launching in 1978, the journal Fuzzy Sets and Systems has been devoted to the international advancement of the theory and application of fuzzy sets and systems. The theory of fuzzy sets now encompasses a well organized corpus of basic notions including (and not restricted to) aggregation operations, a generalized theory of relations, specific measures of information content, a calculus of fuzzy numbers. Fuzzy sets are also the cornerstone of a non-additive uncertainty theory, namely possibility theory, and of a versatile tool for both linguistic and numerical modeling: fuzzy rule-based systems. Numerous works now combine fuzzy concepts with other scientific disciplines as well as modern technologies.
In mathematics fuzzy sets have triggered new research topics in connection with category theory, topology, algebra, analysis. Fuzzy sets are also part of a recent trend in the study of generalized measures and integrals, and are combined with statistical methods. Furthermore, fuzzy sets have strong logical underpinnings in the tradition of many-valued logics.