Mohammed Tawshif Hossain , Adnan Sami Sarker , Arnab Chowdhury , Rajesh Mitra , Raiyan Rahman , M.R.C. Mahdy
{"title":"用可解释的人工智能解码记忆:基于脑电图的大规模机器学习研究编码与检索","authors":"Mohammed Tawshif Hossain , Adnan Sami Sarker , Arnab Chowdhury , Rajesh Mitra , Raiyan Rahman , M.R.C. Mahdy","doi":"10.1016/j.neuri.2025.100227","DOIUrl":null,"url":null,"abstract":"<div><div>Understanding the distinct neural signatures that differentiate memory encoding from retrieval remains a key challenge in cognitive neuroscience. This study applies machine learning to EEG data from the Penn Electrophysiology of Encoding and Retrieval Study (PEERS), involving 100 participants across over 400 sessions, to classify these cognitive states. We used Discrete Wavelet Transform (DWT) on EEG signals from six critical brain regions and evaluated seven machine learning models. Gradient Boosting emerged as the most effective classifier, achieving 81.97% accuracy and a 91.62% AUC. To interpret this performance, we applied Explainable AI (XAI) methods, specifically SHapley Additive exPlanations (SHAP). This analysis revealed that theta-band relative energy, especially in the Left and Right Anterior Superior (LAS/RAS) regions, was the most influential predictor. Low theta-band energy and RMS values were particularly indicative of encoding states. Topographic maps provided further validation, showing significant neural differences in anterior regions, notably within the theta range. However, the study is limited by the use of a fixed 2.5 s analysis window and demographic skew in the dataset, which may affect generalizability. Future work should address these issues through varied windowing strategies and more diverse populations. This study advances understanding of cognitive memory processes and supports the development of adaptive, memory-aware AI systems, contributing to both neuroscience and neurotechnology.</div></div>","PeriodicalId":74295,"journal":{"name":"Neuroscience informatics","volume":"5 4","pages":"Article 100227"},"PeriodicalIF":0.0000,"publicationDate":"2025-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Decoding memory with explainable AI: A large-scale EEG-based machine learning study of encoding vs. retrieval\",\"authors\":\"Mohammed Tawshif Hossain , Adnan Sami Sarker , Arnab Chowdhury , Rajesh Mitra , Raiyan Rahman , M.R.C. Mahdy\",\"doi\":\"10.1016/j.neuri.2025.100227\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Understanding the distinct neural signatures that differentiate memory encoding from retrieval remains a key challenge in cognitive neuroscience. This study applies machine learning to EEG data from the Penn Electrophysiology of Encoding and Retrieval Study (PEERS), involving 100 participants across over 400 sessions, to classify these cognitive states. We used Discrete Wavelet Transform (DWT) on EEG signals from six critical brain regions and evaluated seven machine learning models. Gradient Boosting emerged as the most effective classifier, achieving 81.97% accuracy and a 91.62% AUC. To interpret this performance, we applied Explainable AI (XAI) methods, specifically SHapley Additive exPlanations (SHAP). This analysis revealed that theta-band relative energy, especially in the Left and Right Anterior Superior (LAS/RAS) regions, was the most influential predictor. Low theta-band energy and RMS values were particularly indicative of encoding states. Topographic maps provided further validation, showing significant neural differences in anterior regions, notably within the theta range. However, the study is limited by the use of a fixed 2.5 s analysis window and demographic skew in the dataset, which may affect generalizability. Future work should address these issues through varied windowing strategies and more diverse populations. This study advances understanding of cognitive memory processes and supports the development of adaptive, memory-aware AI systems, contributing to both neuroscience and neurotechnology.</div></div>\",\"PeriodicalId\":74295,\"journal\":{\"name\":\"Neuroscience informatics\",\"volume\":\"5 4\",\"pages\":\"Article 100227\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neuroscience informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772528625000421\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroscience informatics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772528625000421","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Decoding memory with explainable AI: A large-scale EEG-based machine learning study of encoding vs. retrieval
Understanding the distinct neural signatures that differentiate memory encoding from retrieval remains a key challenge in cognitive neuroscience. This study applies machine learning to EEG data from the Penn Electrophysiology of Encoding and Retrieval Study (PEERS), involving 100 participants across over 400 sessions, to classify these cognitive states. We used Discrete Wavelet Transform (DWT) on EEG signals from six critical brain regions and evaluated seven machine learning models. Gradient Boosting emerged as the most effective classifier, achieving 81.97% accuracy and a 91.62% AUC. To interpret this performance, we applied Explainable AI (XAI) methods, specifically SHapley Additive exPlanations (SHAP). This analysis revealed that theta-band relative energy, especially in the Left and Right Anterior Superior (LAS/RAS) regions, was the most influential predictor. Low theta-band energy and RMS values were particularly indicative of encoding states. Topographic maps provided further validation, showing significant neural differences in anterior regions, notably within the theta range. However, the study is limited by the use of a fixed 2.5 s analysis window and demographic skew in the dataset, which may affect generalizability. Future work should address these issues through varied windowing strategies and more diverse populations. This study advances understanding of cognitive memory processes and supports the development of adaptive, memory-aware AI systems, contributing to both neuroscience and neurotechnology.
Neuroscience informaticsSurgery, Radiology and Imaging, Information Systems, Neurology, Artificial Intelligence, Computer Science Applications, Signal Processing, Critical Care and Intensive Care Medicine, Health Informatics, Clinical Neurology, Pathology and Medical Technology