用可解释的人工智能解码记忆:基于脑电图的大规模机器学习研究编码与检索

Mohammed Tawshif Hossain , Adnan Sami Sarker , Arnab Chowdhury , Rajesh Mitra , Raiyan Rahman , M.R.C. Mahdy
{"title":"用可解释的人工智能解码记忆:基于脑电图的大规模机器学习研究编码与检索","authors":"Mohammed Tawshif Hossain ,&nbsp;Adnan Sami Sarker ,&nbsp;Arnab Chowdhury ,&nbsp;Rajesh Mitra ,&nbsp;Raiyan Rahman ,&nbsp;M.R.C. Mahdy","doi":"10.1016/j.neuri.2025.100227","DOIUrl":null,"url":null,"abstract":"<div><div>Understanding the distinct neural signatures that differentiate memory encoding from retrieval remains a key challenge in cognitive neuroscience. This study applies machine learning to EEG data from the Penn Electrophysiology of Encoding and Retrieval Study (PEERS), involving 100 participants across over 400 sessions, to classify these cognitive states. We used Discrete Wavelet Transform (DWT) on EEG signals from six critical brain regions and evaluated seven machine learning models. Gradient Boosting emerged as the most effective classifier, achieving 81.97% accuracy and a 91.62% AUC. To interpret this performance, we applied Explainable AI (XAI) methods, specifically SHapley Additive exPlanations (SHAP). This analysis revealed that theta-band relative energy, especially in the Left and Right Anterior Superior (LAS/RAS) regions, was the most influential predictor. Low theta-band energy and RMS values were particularly indicative of encoding states. Topographic maps provided further validation, showing significant neural differences in anterior regions, notably within the theta range. However, the study is limited by the use of a fixed 2.5 s analysis window and demographic skew in the dataset, which may affect generalizability. Future work should address these issues through varied windowing strategies and more diverse populations. This study advances understanding of cognitive memory processes and supports the development of adaptive, memory-aware AI systems, contributing to both neuroscience and neurotechnology.</div></div>","PeriodicalId":74295,"journal":{"name":"Neuroscience informatics","volume":"5 4","pages":"Article 100227"},"PeriodicalIF":0.0000,"publicationDate":"2025-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Decoding memory with explainable AI: A large-scale EEG-based machine learning study of encoding vs. retrieval\",\"authors\":\"Mohammed Tawshif Hossain ,&nbsp;Adnan Sami Sarker ,&nbsp;Arnab Chowdhury ,&nbsp;Rajesh Mitra ,&nbsp;Raiyan Rahman ,&nbsp;M.R.C. Mahdy\",\"doi\":\"10.1016/j.neuri.2025.100227\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Understanding the distinct neural signatures that differentiate memory encoding from retrieval remains a key challenge in cognitive neuroscience. This study applies machine learning to EEG data from the Penn Electrophysiology of Encoding and Retrieval Study (PEERS), involving 100 participants across over 400 sessions, to classify these cognitive states. We used Discrete Wavelet Transform (DWT) on EEG signals from six critical brain regions and evaluated seven machine learning models. Gradient Boosting emerged as the most effective classifier, achieving 81.97% accuracy and a 91.62% AUC. To interpret this performance, we applied Explainable AI (XAI) methods, specifically SHapley Additive exPlanations (SHAP). This analysis revealed that theta-band relative energy, especially in the Left and Right Anterior Superior (LAS/RAS) regions, was the most influential predictor. Low theta-band energy and RMS values were particularly indicative of encoding states. Topographic maps provided further validation, showing significant neural differences in anterior regions, notably within the theta range. However, the study is limited by the use of a fixed 2.5 s analysis window and demographic skew in the dataset, which may affect generalizability. Future work should address these issues through varied windowing strategies and more diverse populations. This study advances understanding of cognitive memory processes and supports the development of adaptive, memory-aware AI systems, contributing to both neuroscience and neurotechnology.</div></div>\",\"PeriodicalId\":74295,\"journal\":{\"name\":\"Neuroscience informatics\",\"volume\":\"5 4\",\"pages\":\"Article 100227\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neuroscience informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772528625000421\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroscience informatics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772528625000421","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

理解区分记忆编码和检索的不同神经特征仍然是认知神经科学的一个关键挑战。这项研究将机器学习应用于宾夕法尼亚大学编码和检索电生理学研究(PEERS)的脑电图数据,涉及100名参与者,跨越400多个会议,对这些认知状态进行分类。我们使用离散小波变换(DWT)对来自6个关键脑区的脑电图信号进行处理,并评估了7种机器学习模型。Gradient Boosting是最有效的分类器,准确率达到81.97%,AUC为91.62%。为了解释这种表现,我们应用了可解释人工智能(Explainable AI, XAI)方法,特别是SHapley加性解释(SHAP)。该分析显示,theta波段相对能量,特别是在左右前上(LAS/RAS)区域,是最具影响力的预测因子。低波段能量和RMS值特别表明编码状态。地形图提供了进一步的验证,显示了显著的神经差异在前部区域,特别是在θ波范围内。然而,该研究受到使用固定的2.5 s分析窗口和数据集中的人口统计偏差的限制,这可能会影响通用性。未来的工作应该通过不同的窗口策略和更多样化的人群来解决这些问题。这项研究促进了对认知记忆过程的理解,并支持了自适应、记忆感知的人工智能系统的发展,为神经科学和神经技术做出了贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Decoding memory with explainable AI: A large-scale EEG-based machine learning study of encoding vs. retrieval
Understanding the distinct neural signatures that differentiate memory encoding from retrieval remains a key challenge in cognitive neuroscience. This study applies machine learning to EEG data from the Penn Electrophysiology of Encoding and Retrieval Study (PEERS), involving 100 participants across over 400 sessions, to classify these cognitive states. We used Discrete Wavelet Transform (DWT) on EEG signals from six critical brain regions and evaluated seven machine learning models. Gradient Boosting emerged as the most effective classifier, achieving 81.97% accuracy and a 91.62% AUC. To interpret this performance, we applied Explainable AI (XAI) methods, specifically SHapley Additive exPlanations (SHAP). This analysis revealed that theta-band relative energy, especially in the Left and Right Anterior Superior (LAS/RAS) regions, was the most influential predictor. Low theta-band energy and RMS values were particularly indicative of encoding states. Topographic maps provided further validation, showing significant neural differences in anterior regions, notably within the theta range. However, the study is limited by the use of a fixed 2.5 s analysis window and demographic skew in the dataset, which may affect generalizability. Future work should address these issues through varied windowing strategies and more diverse populations. This study advances understanding of cognitive memory processes and supports the development of adaptive, memory-aware AI systems, contributing to both neuroscience and neurotechnology.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Neuroscience informatics
Neuroscience informatics Surgery, Radiology and Imaging, Information Systems, Neurology, Artificial Intelligence, Computer Science Applications, Signal Processing, Critical Care and Intensive Care Medicine, Health Informatics, Clinical Neurology, Pathology and Medical Technology
自引率
0.00%
发文量
0
审稿时长
57 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信