Claudia McCown , Evan A. Ambrose , Devang M. Patel , Hassan Al-Ali , Louis Scampavia , Fangliang Zhang , Timothy P. Spicer
{"title":"基于细胞的高通量筛选ATE1小分子抑制剂。","authors":"Claudia McCown , Evan A. Ambrose , Devang M. Patel , Hassan Al-Ali , Louis Scampavia , Fangliang Zhang , Timothy P. Spicer","doi":"10.1016/j.slasd.2025.100263","DOIUrl":null,"url":null,"abstract":"<div><div>Arginyltransferase 1 (ATE1) catalyzes post-translational arginylation, a process implicated in protein stability, cellular function, and disease pathology. Dysregulated arginylation is associated with neurodegenerative disorders, cancer, and inflammation. Particularly, the increase of ATE1 activity has been shown to cause cell death in response to acute stress, highlighting ATE1 as a promising therapeutic target. Despite its therapeutic relevance, no selective small-molecule inhibitors of ATE1 have been FDA-approved at this time, with previous screening efforts yielding compounds with high promiscuity and toxicity. This, in part, is due to the lack of assays that would accommodate large-scale screening for effective and safe ATE1-inhibitors. To address this challenge, we developed a cell-based high-throughput screening (HTS) assay utilizing a fluorescent reporter system based on an ATE1 substrate peptide fused to a fluorescence protein and co-expressed alongside another fluorescence protein for normalization. The assay enables real-time quantification of ATE1 activity by monitoring arginylation-dependent protein degradation within intact cells, measured by the ratio of the two fluorescence signals. We validated the assay in 96-well and 1536-well plate formats, demonstrating its scalability and robustness through key performance metrics, including Z'-factor and signal-to-background ratio. A pilot screen of a Library of Pharmacologically Active Compounds (LOPAC®1280) was performed to evaluate this approach. This study establishes a scalable and selective platform for discovering ATE1 inhibitors, paving the way for future therapeutic development targeting ATE1-mediated disease pathways.</div></div>","PeriodicalId":21764,"journal":{"name":"SLAS Discovery","volume":"35 ","pages":"Article 100263"},"PeriodicalIF":2.7000,"publicationDate":"2025-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cell based high-throughput screening for small molecule inhibitors of ATE1\",\"authors\":\"Claudia McCown , Evan A. Ambrose , Devang M. Patel , Hassan Al-Ali , Louis Scampavia , Fangliang Zhang , Timothy P. Spicer\",\"doi\":\"10.1016/j.slasd.2025.100263\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Arginyltransferase 1 (ATE1) catalyzes post-translational arginylation, a process implicated in protein stability, cellular function, and disease pathology. Dysregulated arginylation is associated with neurodegenerative disorders, cancer, and inflammation. Particularly, the increase of ATE1 activity has been shown to cause cell death in response to acute stress, highlighting ATE1 as a promising therapeutic target. Despite its therapeutic relevance, no selective small-molecule inhibitors of ATE1 have been FDA-approved at this time, with previous screening efforts yielding compounds with high promiscuity and toxicity. This, in part, is due to the lack of assays that would accommodate large-scale screening for effective and safe ATE1-inhibitors. To address this challenge, we developed a cell-based high-throughput screening (HTS) assay utilizing a fluorescent reporter system based on an ATE1 substrate peptide fused to a fluorescence protein and co-expressed alongside another fluorescence protein for normalization. The assay enables real-time quantification of ATE1 activity by monitoring arginylation-dependent protein degradation within intact cells, measured by the ratio of the two fluorescence signals. We validated the assay in 96-well and 1536-well plate formats, demonstrating its scalability and robustness through key performance metrics, including Z'-factor and signal-to-background ratio. A pilot screen of a Library of Pharmacologically Active Compounds (LOPAC®1280) was performed to evaluate this approach. This study establishes a scalable and selective platform for discovering ATE1 inhibitors, paving the way for future therapeutic development targeting ATE1-mediated disease pathways.</div></div>\",\"PeriodicalId\":21764,\"journal\":{\"name\":\"SLAS Discovery\",\"volume\":\"35 \",\"pages\":\"Article 100263\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SLAS Discovery\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2472555225000565\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SLAS Discovery","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2472555225000565","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Cell based high-throughput screening for small molecule inhibitors of ATE1
Arginyltransferase 1 (ATE1) catalyzes post-translational arginylation, a process implicated in protein stability, cellular function, and disease pathology. Dysregulated arginylation is associated with neurodegenerative disorders, cancer, and inflammation. Particularly, the increase of ATE1 activity has been shown to cause cell death in response to acute stress, highlighting ATE1 as a promising therapeutic target. Despite its therapeutic relevance, no selective small-molecule inhibitors of ATE1 have been FDA-approved at this time, with previous screening efforts yielding compounds with high promiscuity and toxicity. This, in part, is due to the lack of assays that would accommodate large-scale screening for effective and safe ATE1-inhibitors. To address this challenge, we developed a cell-based high-throughput screening (HTS) assay utilizing a fluorescent reporter system based on an ATE1 substrate peptide fused to a fluorescence protein and co-expressed alongside another fluorescence protein for normalization. The assay enables real-time quantification of ATE1 activity by monitoring arginylation-dependent protein degradation within intact cells, measured by the ratio of the two fluorescence signals. We validated the assay in 96-well and 1536-well plate formats, demonstrating its scalability and robustness through key performance metrics, including Z'-factor and signal-to-background ratio. A pilot screen of a Library of Pharmacologically Active Compounds (LOPAC®1280) was performed to evaluate this approach. This study establishes a scalable and selective platform for discovering ATE1 inhibitors, paving the way for future therapeutic development targeting ATE1-mediated disease pathways.
期刊介绍:
Advancing Life Sciences R&D: SLAS Discovery reports how scientists develop and utilize novel technologies and/or approaches to provide and characterize chemical and biological tools to understand and treat human disease.
SLAS Discovery is a peer-reviewed journal that publishes scientific reports that enable and improve target validation, evaluate current drug discovery technologies, provide novel research tools, and incorporate research approaches that enhance depth of knowledge and drug discovery success.
SLAS Discovery emphasizes scientific and technical advances in target identification/validation (including chemical probes, RNA silencing, gene editing technologies); biomarker discovery; assay development; virtual, medium- or high-throughput screening (biochemical and biological, biophysical, phenotypic, toxicological, ADME); lead generation/optimization; chemical biology; and informatics (data analysis, image analysis, statistics, bio- and chemo-informatics). Review articles on target biology, new paradigms in drug discovery and advances in drug discovery technologies.
SLAS Discovery is of particular interest to those involved in analytical chemistry, applied microbiology, automation, biochemistry, bioengineering, biomedical optics, biotechnology, bioinformatics, cell biology, DNA science and technology, genetics, information technology, medicinal chemistry, molecular biology, natural products chemistry, organic chemistry, pharmacology, spectroscopy, and toxicology.
SLAS Discovery is a member of the Committee on Publication Ethics (COPE) and was published previously (1996-2016) as the Journal of Biomolecular Screening (JBS).