{"title":"耦合帐篷映射格中同步-间歇同步过渡及绝对连续不变测度的唯一性","authors":"Yiqian Wang, Junke Zhang","doi":"10.1016/j.physd.2025.134874","DOIUrl":null,"url":null,"abstract":"<div><div>We develop a new geometric-combinatorial method to study synchronization, intermittent synchronization, and the absolutely continuous invariant measure of a two-node coupled map lattice (CML) for a class of tent maps whose slope <span><math><mrow><mi>k</mi><mo>≤</mo><mn>2</mn></mrow></math></span>. We prove that with a coupling <span><math><mrow><mi>c</mi><mo>∈</mo><mrow><mo>[</mo><mn>0</mn><mo>,</mo><msup><mrow><mi>c</mi></mrow><mrow><mo>∗</mo></mrow></msup><mo>)</mo></mrow><mo>∪</mo><mrow><mo>(</mo><mn>1</mn><mo>−</mo><msup><mrow><mi>c</mi></mrow><mrow><mo>∗</mo></mrow></msup><mo>,</mo><mn>1</mn><mo>]</mo></mrow></mrow></math></span>, where <span><math><mrow><msup><mrow><mi>c</mi></mrow><mrow><mo>∗</mo></mrow></msup><mo>=</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mrow><mo>(</mo><mn>1</mn><mo>−</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mi>k</mi></mrow></mfrac><mo>)</mo></mrow></mrow></math></span>, there exists a unique absolutely continuous invariant measure and intermittent synchronization occurs, that is, almost every point enters and exits an arbitrarily small neighborhood of the diagonal infinitely many times. In contrast, for <span><math><mrow><mi>c</mi><mo>∈</mo><mrow><mo>(</mo><msup><mrow><mi>c</mi></mrow><mrow><mo>∗</mo></mrow></msup><mo>,</mo><mn>1</mn><mo>−</mo><msup><mrow><mi>c</mi></mrow><mrow><mo>∗</mo></mrow></msup><mo>)</mo></mrow></mrow></math></span>, synchronization occurs for every point. This shows that <span><math><msup><mrow><mi>c</mi></mrow><mrow><mo>∗</mo></mrow></msup></math></span> is the transition point of the coupling strength.</div></div>","PeriodicalId":20050,"journal":{"name":"Physica D: Nonlinear Phenomena","volume":"482 ","pages":"Article 134874"},"PeriodicalIF":2.9000,"publicationDate":"2025-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synchronization–intermittent synchronization transition and the uniqueness of absolutely continuous invariant measure in coupled tent map lattice\",\"authors\":\"Yiqian Wang, Junke Zhang\",\"doi\":\"10.1016/j.physd.2025.134874\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We develop a new geometric-combinatorial method to study synchronization, intermittent synchronization, and the absolutely continuous invariant measure of a two-node coupled map lattice (CML) for a class of tent maps whose slope <span><math><mrow><mi>k</mi><mo>≤</mo><mn>2</mn></mrow></math></span>. We prove that with a coupling <span><math><mrow><mi>c</mi><mo>∈</mo><mrow><mo>[</mo><mn>0</mn><mo>,</mo><msup><mrow><mi>c</mi></mrow><mrow><mo>∗</mo></mrow></msup><mo>)</mo></mrow><mo>∪</mo><mrow><mo>(</mo><mn>1</mn><mo>−</mo><msup><mrow><mi>c</mi></mrow><mrow><mo>∗</mo></mrow></msup><mo>,</mo><mn>1</mn><mo>]</mo></mrow></mrow></math></span>, where <span><math><mrow><msup><mrow><mi>c</mi></mrow><mrow><mo>∗</mo></mrow></msup><mo>=</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mrow><mo>(</mo><mn>1</mn><mo>−</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mi>k</mi></mrow></mfrac><mo>)</mo></mrow></mrow></math></span>, there exists a unique absolutely continuous invariant measure and intermittent synchronization occurs, that is, almost every point enters and exits an arbitrarily small neighborhood of the diagonal infinitely many times. In contrast, for <span><math><mrow><mi>c</mi><mo>∈</mo><mrow><mo>(</mo><msup><mrow><mi>c</mi></mrow><mrow><mo>∗</mo></mrow></msup><mo>,</mo><mn>1</mn><mo>−</mo><msup><mrow><mi>c</mi></mrow><mrow><mo>∗</mo></mrow></msup><mo>)</mo></mrow></mrow></math></span>, synchronization occurs for every point. This shows that <span><math><msup><mrow><mi>c</mi></mrow><mrow><mo>∗</mo></mrow></msup></math></span> is the transition point of the coupling strength.</div></div>\",\"PeriodicalId\":20050,\"journal\":{\"name\":\"Physica D: Nonlinear Phenomena\",\"volume\":\"482 \",\"pages\":\"Article 134874\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physica D: Nonlinear Phenomena\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167278925003513\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica D: Nonlinear Phenomena","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167278925003513","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Synchronization–intermittent synchronization transition and the uniqueness of absolutely continuous invariant measure in coupled tent map lattice
We develop a new geometric-combinatorial method to study synchronization, intermittent synchronization, and the absolutely continuous invariant measure of a two-node coupled map lattice (CML) for a class of tent maps whose slope . We prove that with a coupling , where , there exists a unique absolutely continuous invariant measure and intermittent synchronization occurs, that is, almost every point enters and exits an arbitrarily small neighborhood of the diagonal infinitely many times. In contrast, for , synchronization occurs for every point. This shows that is the transition point of the coupling strength.
期刊介绍:
Physica D (Nonlinear Phenomena) publishes research and review articles reporting on experimental and theoretical works, techniques and ideas that advance the understanding of nonlinear phenomena. Topics encompass wave motion in physical, chemical and biological systems; physical or biological phenomena governed by nonlinear field equations, including hydrodynamics and turbulence; pattern formation and cooperative phenomena; instability, bifurcations, chaos, and space-time disorder; integrable/Hamiltonian systems; asymptotic analysis and, more generally, mathematical methods for nonlinear systems.