核孔复合物功能障碍驱动TDP-43在ALS中的病理变化

IF 11.9 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
O. Ramírez-Núñez , S. Rico-Ríos , P. Torres , V. Ayala , A. Fernàndez-Bernal , M. Ceron-Codorniu , P. Andrés-Benito , A. Vinyals , S. Maqsood , I. Ferrer , R. Pamplona , M. Portero-Otin
{"title":"核孔复合物功能障碍驱动TDP-43在ALS中的病理变化","authors":"O. Ramírez-Núñez ,&nbsp;S. Rico-Ríos ,&nbsp;P. Torres ,&nbsp;V. Ayala ,&nbsp;A. Fernàndez-Bernal ,&nbsp;M. Ceron-Codorniu ,&nbsp;P. Andrés-Benito ,&nbsp;A. Vinyals ,&nbsp;S. Maqsood ,&nbsp;I. Ferrer ,&nbsp;R. Pamplona ,&nbsp;M. Portero-Otin","doi":"10.1016/j.redox.2025.103824","DOIUrl":null,"url":null,"abstract":"<div><div>Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by progressive motor neuron degeneration and pathological aggregation of TDP-43. While protein misfolding and impaired autophagy are established features, accumulating evidence highlights the nuclear pore complex (NPC)as a vulnerable, redox-sensitive hub in ALS pathogenesis. Here, we show that selective loss of NPC components, particularly the scaffold proteins NUP107 and NUP93, and FG-repeat-containing components—is a consistent finding across ALS postmortem spinal cord, SOD1^G93A and TDP-43 mutant mouse models, and human cell systems.CRISPR-mediated depletion of NUP107 in human cells triggers hallmark features of ALS pathology, including cytoplasmic TDP-43 mislocalization, increased phosphorylation, and autophagy dysfunction. Conversely, TDP-43 knockdown perturbs NPC composition, suggesting a reciprocal regulatory loop. Crucially, we demonstrate that oxidative stress exacerbated NPC subunit mislocalization and enhanced TDP-43 aggregation. Using oxime blotting and DNPH assays, we show that FG-repeat subunits of NPC were direct targets of redox-driven carbonylation, indicating that oxidative modifications compromise NPC integrity thuspotentially affecting nucleocytoplasmic transport. Our findings established NPC dysfunction as a redox-sensitive driver of TDP-43 pathology in ALS and highlight nucleocytoplasmic transport as a promising therapeutic axis. The susceptibility of long-lived NPC proteins to oxidative damage provides a mechanistic link between redox stress, proteostasis collapse, and neurodegeneration.</div></div>","PeriodicalId":20998,"journal":{"name":"Redox Biology","volume":"86 ","pages":"Article 103824"},"PeriodicalIF":11.9000,"publicationDate":"2025-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nuclear pore complex dysfunction drives TDP-43 pathology in ALS\",\"authors\":\"O. Ramírez-Núñez ,&nbsp;S. Rico-Ríos ,&nbsp;P. Torres ,&nbsp;V. Ayala ,&nbsp;A. Fernàndez-Bernal ,&nbsp;M. Ceron-Codorniu ,&nbsp;P. Andrés-Benito ,&nbsp;A. Vinyals ,&nbsp;S. Maqsood ,&nbsp;I. Ferrer ,&nbsp;R. Pamplona ,&nbsp;M. Portero-Otin\",\"doi\":\"10.1016/j.redox.2025.103824\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by progressive motor neuron degeneration and pathological aggregation of TDP-43. While protein misfolding and impaired autophagy are established features, accumulating evidence highlights the nuclear pore complex (NPC)as a vulnerable, redox-sensitive hub in ALS pathogenesis. Here, we show that selective loss of NPC components, particularly the scaffold proteins NUP107 and NUP93, and FG-repeat-containing components—is a consistent finding across ALS postmortem spinal cord, SOD1^G93A and TDP-43 mutant mouse models, and human cell systems.CRISPR-mediated depletion of NUP107 in human cells triggers hallmark features of ALS pathology, including cytoplasmic TDP-43 mislocalization, increased phosphorylation, and autophagy dysfunction. Conversely, TDP-43 knockdown perturbs NPC composition, suggesting a reciprocal regulatory loop. Crucially, we demonstrate that oxidative stress exacerbated NPC subunit mislocalization and enhanced TDP-43 aggregation. Using oxime blotting and DNPH assays, we show that FG-repeat subunits of NPC were direct targets of redox-driven carbonylation, indicating that oxidative modifications compromise NPC integrity thuspotentially affecting nucleocytoplasmic transport. Our findings established NPC dysfunction as a redox-sensitive driver of TDP-43 pathology in ALS and highlight nucleocytoplasmic transport as a promising therapeutic axis. The susceptibility of long-lived NPC proteins to oxidative damage provides a mechanistic link between redox stress, proteostasis collapse, and neurodegeneration.</div></div>\",\"PeriodicalId\":20998,\"journal\":{\"name\":\"Redox Biology\",\"volume\":\"86 \",\"pages\":\"Article 103824\"},\"PeriodicalIF\":11.9000,\"publicationDate\":\"2025-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Redox Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2213231725003374\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Redox Biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2213231725003374","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

肌萎缩性侧索硬化症(ALS)是一种以进行性运动神经元变性和TDP-43病理聚集为特征的致死性神经退行性疾病。虽然蛋白质错误折叠和自噬受损是已知的特征,但越来越多的证据表明核孔复合体(NPC)在ALS发病过程中是一个脆弱的、氧化还原敏感的中枢。在这里,我们发现NPC成分的选择性损失,特别是支架蛋白NUP107和NUP93,以及含有fg -repeat的成分,在ALS死后脊髓、SOD1^G93A和TDP-43突变小鼠模型和人类细胞系统中是一致的发现。crispr介导的人类细胞中NUP107的缺失引发ALS病理的标志性特征,包括细胞质TDP-43错定位、磷酸化增加和自噬功能障碍。相反,TDP-43的敲低会干扰NPC的组成,表明存在相互调节回路。重要的是,我们证明氧化应激加剧了NPC亚基的错误定位,增强了TDP-43的聚集。通过肟印迹和DNPH检测,我们发现鼻咽癌的fg重复亚基是氧化还原驱动羰基化的直接靶标,这表明氧化修饰会损害鼻咽癌的完整性,从而潜在地影响核胞质运输。我们的研究结果表明,鼻咽癌功能障碍是肌萎缩性侧索硬化症中TDP-43病理的氧化还原敏感驱动因素,并强调核细胞质转运是一个有前景的治疗轴。长寿命鼻咽癌蛋白对氧化损伤的易感性提供了氧化还原应激、蛋白质平衡崩溃和神经变性之间的机制联系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nuclear pore complex dysfunction drives TDP-43 pathology in ALS
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by progressive motor neuron degeneration and pathological aggregation of TDP-43. While protein misfolding and impaired autophagy are established features, accumulating evidence highlights the nuclear pore complex (NPC)as a vulnerable, redox-sensitive hub in ALS pathogenesis. Here, we show that selective loss of NPC components, particularly the scaffold proteins NUP107 and NUP93, and FG-repeat-containing components—is a consistent finding across ALS postmortem spinal cord, SOD1^G93A and TDP-43 mutant mouse models, and human cell systems.CRISPR-mediated depletion of NUP107 in human cells triggers hallmark features of ALS pathology, including cytoplasmic TDP-43 mislocalization, increased phosphorylation, and autophagy dysfunction. Conversely, TDP-43 knockdown perturbs NPC composition, suggesting a reciprocal regulatory loop. Crucially, we demonstrate that oxidative stress exacerbated NPC subunit mislocalization and enhanced TDP-43 aggregation. Using oxime blotting and DNPH assays, we show that FG-repeat subunits of NPC were direct targets of redox-driven carbonylation, indicating that oxidative modifications compromise NPC integrity thuspotentially affecting nucleocytoplasmic transport. Our findings established NPC dysfunction as a redox-sensitive driver of TDP-43 pathology in ALS and highlight nucleocytoplasmic transport as a promising therapeutic axis. The susceptibility of long-lived NPC proteins to oxidative damage provides a mechanistic link between redox stress, proteostasis collapse, and neurodegeneration.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Redox Biology
Redox Biology BIOCHEMISTRY & MOLECULAR BIOLOGY-
CiteScore
19.90
自引率
3.50%
发文量
318
审稿时长
25 days
期刊介绍: Redox Biology is the official journal of the Society for Redox Biology and Medicine and the Society for Free Radical Research-Europe. It is also affiliated with the International Society for Free Radical Research (SFRRI). This journal serves as a platform for publishing pioneering research, innovative methods, and comprehensive review articles in the field of redox biology, encompassing both health and disease. Redox Biology welcomes various forms of contributions, including research articles (short or full communications), methods, mini-reviews, and commentaries. Through its diverse range of published content, Redox Biology aims to foster advancements and insights in the understanding of redox biology and its implications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信