q学习促进了最后通牒博弈中公平和慷慨的进化

IF 5.6 1区 数学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Binjie Wu , Shaofei Shen , Jiafeng Wang , Haibin Wan
{"title":"q学习促进了最后通牒博弈中公平和慷慨的进化","authors":"Binjie Wu ,&nbsp;Shaofei Shen ,&nbsp;Jiafeng Wang ,&nbsp;Haibin Wan","doi":"10.1016/j.chaos.2025.116984","DOIUrl":null,"url":null,"abstract":"<div><div>The traditional Q-learning algorithm has been widely applied to the study of cooperation in social dilemmas, however, few studies have utilized it in the context of the Ultimatum Game. To address this gap, this paper investigates the evolutionary Ultimatum Game by proposing a strategy-adjustment-based Q-learning algorithm. Through Monte Carlo simulations, we quantitatively confirm the significant influence of sensitivity factors (denoted as <span><math><msub><mrow><mi>β</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span> and <span><math><msub><mrow><mi>β</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span>) on fairness and generosity. Notably, compared to the conventional situation, the introduction of sensitivity factors, especially when <span><math><mrow><msub><mrow><mi>β</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>≫</mo><msub><mrow><mi>β</mi></mrow><mrow><mi>q</mi></mrow></msub></mrow></math></span>, leads to a marked increase in levels of fairness and generosity. Additionally, when <span><math><mrow><msub><mrow><mi>β</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>≪</mo><msub><mrow><mi>β</mi></mrow><mrow><mi>q</mi></mrow></msub></mrow></math></span>, the population gravitates toward empathy-driven strategies, further enhancing fairness. Conversely, we find that when <span><math><msub><mrow><mi>β</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span> and <span><math><msub><mrow><mi>β</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span> are approximately equal, fairness is undermined. These evolutionary dynamics provide deeper insights into the mechanisms underlying fairness and generosity in human behavior.</div></div>","PeriodicalId":9764,"journal":{"name":"Chaos Solitons & Fractals","volume":"200 ","pages":"Article 116984"},"PeriodicalIF":5.6000,"publicationDate":"2025-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Q-learning promotes the evolution of fairness and generosity in the ultimatum game\",\"authors\":\"Binjie Wu ,&nbsp;Shaofei Shen ,&nbsp;Jiafeng Wang ,&nbsp;Haibin Wan\",\"doi\":\"10.1016/j.chaos.2025.116984\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The traditional Q-learning algorithm has been widely applied to the study of cooperation in social dilemmas, however, few studies have utilized it in the context of the Ultimatum Game. To address this gap, this paper investigates the evolutionary Ultimatum Game by proposing a strategy-adjustment-based Q-learning algorithm. Through Monte Carlo simulations, we quantitatively confirm the significant influence of sensitivity factors (denoted as <span><math><msub><mrow><mi>β</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span> and <span><math><msub><mrow><mi>β</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span>) on fairness and generosity. Notably, compared to the conventional situation, the introduction of sensitivity factors, especially when <span><math><mrow><msub><mrow><mi>β</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>≫</mo><msub><mrow><mi>β</mi></mrow><mrow><mi>q</mi></mrow></msub></mrow></math></span>, leads to a marked increase in levels of fairness and generosity. Additionally, when <span><math><mrow><msub><mrow><mi>β</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>≪</mo><msub><mrow><mi>β</mi></mrow><mrow><mi>q</mi></mrow></msub></mrow></math></span>, the population gravitates toward empathy-driven strategies, further enhancing fairness. Conversely, we find that when <span><math><msub><mrow><mi>β</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span> and <span><math><msub><mrow><mi>β</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span> are approximately equal, fairness is undermined. These evolutionary dynamics provide deeper insights into the mechanisms underlying fairness and generosity in human behavior.</div></div>\",\"PeriodicalId\":9764,\"journal\":{\"name\":\"Chaos Solitons & Fractals\",\"volume\":\"200 \",\"pages\":\"Article 116984\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2025-08-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chaos Solitons & Fractals\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S096007792500997X\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos Solitons & Fractals","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S096007792500997X","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

传统的Q-learning算法已被广泛应用于社会困境下的合作研究,但很少有研究将其应用于最后通牒博弈。为了解决这一问题,本文通过提出一种基于策略调整的q学习算法来研究进化最后通牒博弈。通过蒙特卡罗模拟,我们定量地证实了敏感性因子(表示为βp和βq)对公平和慷慨的显著影响。值得注意的是,与传统情况相比,敏感性因素的引入,特别是当βp比βq高时,导致公平和慷慨水平的显著提高。此外,当βp≪βq时,人们倾向于移情驱动策略,进一步增强了公平性。相反,我们发现当βp和βq近似相等时,公平性被破坏。这些进化动力学为人类行为中公平和慷慨的机制提供了更深入的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Q-learning promotes the evolution of fairness and generosity in the ultimatum game
The traditional Q-learning algorithm has been widely applied to the study of cooperation in social dilemmas, however, few studies have utilized it in the context of the Ultimatum Game. To address this gap, this paper investigates the evolutionary Ultimatum Game by proposing a strategy-adjustment-based Q-learning algorithm. Through Monte Carlo simulations, we quantitatively confirm the significant influence of sensitivity factors (denoted as βp and βq) on fairness and generosity. Notably, compared to the conventional situation, the introduction of sensitivity factors, especially when βpβq, leads to a marked increase in levels of fairness and generosity. Additionally, when βpβq, the population gravitates toward empathy-driven strategies, further enhancing fairness. Conversely, we find that when βp and βq are approximately equal, fairness is undermined. These evolutionary dynamics provide deeper insights into the mechanisms underlying fairness and generosity in human behavior.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chaos Solitons & Fractals
Chaos Solitons & Fractals 物理-数学跨学科应用
CiteScore
13.20
自引率
10.30%
发文量
1087
审稿时长
9 months
期刊介绍: Chaos, Solitons & Fractals strives to establish itself as a premier journal in the interdisciplinary realm of Nonlinear Science, Non-equilibrium, and Complex Phenomena. It welcomes submissions covering a broad spectrum of topics within this field, including dynamics, non-equilibrium processes in physics, chemistry, and geophysics, complex matter and networks, mathematical models, computational biology, applications to quantum and mesoscopic phenomena, fluctuations and random processes, self-organization, and social phenomena.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信