室温和高温下NbMoTaWBx高熵合金和复合材料的显微组织演变及相关磨损行为

IF 4.8 2区 材料科学 Q2 CHEMISTRY, PHYSICAL
Lijun Wang , Lulu Guo , Huicong Chen , Chenwei Shao , Zhaoying Ding , Hyun Suk Choi , Maxx Yao , Yu Zou
{"title":"室温和高温下NbMoTaWBx高熵合金和复合材料的显微组织演变及相关磨损行为","authors":"Lijun Wang ,&nbsp;Lulu Guo ,&nbsp;Huicong Chen ,&nbsp;Chenwei Shao ,&nbsp;Zhaoying Ding ,&nbsp;Hyun Suk Choi ,&nbsp;Maxx Yao ,&nbsp;Yu Zou","doi":"10.1016/j.intermet.2025.108964","DOIUrl":null,"url":null,"abstract":"<div><div>Refractory high entropy alloys (RHEAs) such as NbMoTaW exhibit potential for wear-resistant applications due to their high hardness and thermal stability at elevated temperatures. The addition of boron (B) may lead to a transformation from RHEAs into refractory high entropy composites (RHECs) due to the formation of hard boride phases. This transition is anticipated to significantly increase the hardness and wear resistance over a large temperature range. In this study, we investigate the impact of boride reinforcements on the microstructure and wear performance of the NbMoTaWB<sub>x</sub> (x = 0–2) at room and elevated temperatures up to 600 °C. The results show the following: (i) The microstructure evolves from a dendritic microstructure to a complex microstructure with eutectic phase, dispersed body-centered cubic (BCC) particles and boride phases, showing the transition from RHEAs to RHECs; (ii) At room temperature, the wear rate decreases with increasing boron content, with abrasive wear as the primary mode and oxidation wear as minor contribution; (iii) At 600 °C, the wear rate increases with increasing boron content, and the dominant wear mode is oxidation-abrasion.</div></div>","PeriodicalId":331,"journal":{"name":"Intermetallics","volume":"186 ","pages":"Article 108964"},"PeriodicalIF":4.8000,"publicationDate":"2025-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Boron-induced microstructure evolution and related wear behavior in NbMoTaWBx high-entropy alloys and composites at room and elevated temperatures\",\"authors\":\"Lijun Wang ,&nbsp;Lulu Guo ,&nbsp;Huicong Chen ,&nbsp;Chenwei Shao ,&nbsp;Zhaoying Ding ,&nbsp;Hyun Suk Choi ,&nbsp;Maxx Yao ,&nbsp;Yu Zou\",\"doi\":\"10.1016/j.intermet.2025.108964\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Refractory high entropy alloys (RHEAs) such as NbMoTaW exhibit potential for wear-resistant applications due to their high hardness and thermal stability at elevated temperatures. The addition of boron (B) may lead to a transformation from RHEAs into refractory high entropy composites (RHECs) due to the formation of hard boride phases. This transition is anticipated to significantly increase the hardness and wear resistance over a large temperature range. In this study, we investigate the impact of boride reinforcements on the microstructure and wear performance of the NbMoTaWB<sub>x</sub> (x = 0–2) at room and elevated temperatures up to 600 °C. The results show the following: (i) The microstructure evolves from a dendritic microstructure to a complex microstructure with eutectic phase, dispersed body-centered cubic (BCC) particles and boride phases, showing the transition from RHEAs to RHECs; (ii) At room temperature, the wear rate decreases with increasing boron content, with abrasive wear as the primary mode and oxidation wear as minor contribution; (iii) At 600 °C, the wear rate increases with increasing boron content, and the dominant wear mode is oxidation-abrasion.</div></div>\",\"PeriodicalId\":331,\"journal\":{\"name\":\"Intermetallics\",\"volume\":\"186 \",\"pages\":\"Article 108964\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2025-08-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Intermetallics\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0966979525003292\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intermetallics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0966979525003292","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

难熔高熵合金(RHEAs),如NbMoTaW,由于其在高温下的高硬度和热稳定性,具有耐磨应用的潜力。硼(B)的加入可能导致RHEAs转变为难熔高熵复合材料(rhec),因为形成了硬质硼化物相。这种转变有望在很大的温度范围内显著提高硬度和耐磨性。在本研究中,我们研究了硼化物增强剂在室温和高达600℃的高温下对NbMoTaWBx (x = 0-2)的组织和磨损性能的影响。结果表明:(1)微观组织由枝晶组织演变为由共晶相、分散体心立方(BCC)颗粒和硼化物相组成的复杂组织,呈现出从RHEAs到rhec的转变;(ii)在室温下,磨损率随硼含量的增加而降低,以磨粒磨损为主,氧化磨损次要;(iii)在600℃时,磨损率随硼含量的增加而增加,主要磨损方式为氧化磨损。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Boron-induced microstructure evolution and related wear behavior in NbMoTaWBx high-entropy alloys and composites at room and elevated temperatures
Refractory high entropy alloys (RHEAs) such as NbMoTaW exhibit potential for wear-resistant applications due to their high hardness and thermal stability at elevated temperatures. The addition of boron (B) may lead to a transformation from RHEAs into refractory high entropy composites (RHECs) due to the formation of hard boride phases. This transition is anticipated to significantly increase the hardness and wear resistance over a large temperature range. In this study, we investigate the impact of boride reinforcements on the microstructure and wear performance of the NbMoTaWBx (x = 0–2) at room and elevated temperatures up to 600 °C. The results show the following: (i) The microstructure evolves from a dendritic microstructure to a complex microstructure with eutectic phase, dispersed body-centered cubic (BCC) particles and boride phases, showing the transition from RHEAs to RHECs; (ii) At room temperature, the wear rate decreases with increasing boron content, with abrasive wear as the primary mode and oxidation wear as minor contribution; (iii) At 600 °C, the wear rate increases with increasing boron content, and the dominant wear mode is oxidation-abrasion.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Intermetallics
Intermetallics 工程技术-材料科学:综合
CiteScore
7.80
自引率
9.10%
发文量
291
审稿时长
37 days
期刊介绍: This journal is a platform for publishing innovative research and overviews for advancing our understanding of the structure, property, and functionality of complex metallic alloys, including intermetallics, metallic glasses, and high entropy alloys. The journal reports the science and engineering of metallic materials in the following aspects: Theories and experiments which address the relationship between property and structure in all length scales. Physical modeling and numerical simulations which provide a comprehensive understanding of experimental observations. Stimulated methodologies to characterize the structure and chemistry of materials that correlate the properties. Technological applications resulting from the understanding of property-structure relationship in materials. Novel and cutting-edge results warranting rapid communication. The journal also publishes special issues on selected topics and overviews by invitation only.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信