llm生成的慢性肾脏疾病知识图谱的多视图验证框架。

IF 2.3 3区 医学 Q3 ENGINEERING, BIOMEDICAL
Aditya Kumar, Dilpreet Singh, Mario Cypko, Oliver Amft
{"title":"llm生成的慢性肾脏疾病知识图谱的多视图验证框架。","authors":"Aditya Kumar, Dilpreet Singh, Mario Cypko, Oliver Amft","doi":"10.1007/s11548-025-03495-x","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>The goal of our work is to develop a multi-view validation framework for evaluating LLM-generated knowledge graph (KG) triples. The proposed approach aims to address the lack of established validation procedure in the context of LLM-supported KG construction.</p><p><strong>Methods: </strong>The proposed framework evaluates the LLM-generated triples across three dimensions: semantic plausibility, ontology-grounded type compatibility, and structural importance. We demonstrate the performance for GPT-4 generated concept-specific (e.g., for medications, diagnosis, procedures) triples in the context of chronic kidney disease (CKD).</p><p><strong>Results: </strong>The proposed approach consistently achieves high-quality results across evaluated GPT-4 generated triples, strong semantic plausibility (semantic score mean: 0.79), excellent type compatibility (type score mean: 0.84), and high structural importance of entities within the CKD knowledge domain (ResourceRank mean: 0.94).</p><p><strong>Conclusion: </strong>The validation framework offers a reliable and scalable method for evaluating quality and validity of LLM-generated triples across three views: semantic plausibility, type compatibility, and structural importance. The framework demonstrates robust performance in filtering high-quality triples and lays a strong foundation for fast and reliable medical KG construction and validation.</p>","PeriodicalId":51251,"journal":{"name":"International Journal of Computer Assisted Radiology and Surgery","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A multi-view validation framework for LLM-generated knowledge graphs of chronic kidney disease.\",\"authors\":\"Aditya Kumar, Dilpreet Singh, Mario Cypko, Oliver Amft\",\"doi\":\"10.1007/s11548-025-03495-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>The goal of our work is to develop a multi-view validation framework for evaluating LLM-generated knowledge graph (KG) triples. The proposed approach aims to address the lack of established validation procedure in the context of LLM-supported KG construction.</p><p><strong>Methods: </strong>The proposed framework evaluates the LLM-generated triples across three dimensions: semantic plausibility, ontology-grounded type compatibility, and structural importance. We demonstrate the performance for GPT-4 generated concept-specific (e.g., for medications, diagnosis, procedures) triples in the context of chronic kidney disease (CKD).</p><p><strong>Results: </strong>The proposed approach consistently achieves high-quality results across evaluated GPT-4 generated triples, strong semantic plausibility (semantic score mean: 0.79), excellent type compatibility (type score mean: 0.84), and high structural importance of entities within the CKD knowledge domain (ResourceRank mean: 0.94).</p><p><strong>Conclusion: </strong>The validation framework offers a reliable and scalable method for evaluating quality and validity of LLM-generated triples across three views: semantic plausibility, type compatibility, and structural importance. The framework demonstrates robust performance in filtering high-quality triples and lays a strong foundation for fast and reliable medical KG construction and validation.</p>\",\"PeriodicalId\":51251,\"journal\":{\"name\":\"International Journal of Computer Assisted Radiology and Surgery\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Computer Assisted Radiology and Surgery\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s11548-025-03495-x\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computer Assisted Radiology and Surgery","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11548-025-03495-x","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

目的:我们的工作目标是开发一个多视图验证框架,用于评估法学硕士生成的知识图谱(KG)三元组。提出的方法旨在解决llm支持的KG构建中缺乏既定验证程序的问题。方法:提出的框架从三个维度评估llm生成的三元组:语义合理性、基于本体的类型兼容性和结构重要性。我们展示了慢性肾脏疾病(CKD)背景下GPT-4产生的概念特异性(例如,药物,诊断,程序)三元组的性能。结果:所提出的方法在评估的GPT-4生成的三元组中始终获得高质量的结果,具有强的语义合理性(语义得分平均值:0.79),出色的类型兼容性(类型得分平均值:0.84),以及CKD知识领域内实体的高结构重要性(ResourceRank平均值:0.94)。结论:验证框架提供了一种可靠且可扩展的方法来评估llm生成的三元组的质量和有效性,包括三个视图:语义合理性、类型兼容性和结构重要性。该框架在过滤高质量三元组方面表现出强大的性能,为快速可靠的医疗KG构建和验证奠定了坚实的基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A multi-view validation framework for LLM-generated knowledge graphs of chronic kidney disease.

Purpose: The goal of our work is to develop a multi-view validation framework for evaluating LLM-generated knowledge graph (KG) triples. The proposed approach aims to address the lack of established validation procedure in the context of LLM-supported KG construction.

Methods: The proposed framework evaluates the LLM-generated triples across three dimensions: semantic plausibility, ontology-grounded type compatibility, and structural importance. We demonstrate the performance for GPT-4 generated concept-specific (e.g., for medications, diagnosis, procedures) triples in the context of chronic kidney disease (CKD).

Results: The proposed approach consistently achieves high-quality results across evaluated GPT-4 generated triples, strong semantic plausibility (semantic score mean: 0.79), excellent type compatibility (type score mean: 0.84), and high structural importance of entities within the CKD knowledge domain (ResourceRank mean: 0.94).

Conclusion: The validation framework offers a reliable and scalable method for evaluating quality and validity of LLM-generated triples across three views: semantic plausibility, type compatibility, and structural importance. The framework demonstrates robust performance in filtering high-quality triples and lays a strong foundation for fast and reliable medical KG construction and validation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Computer Assisted Radiology and Surgery
International Journal of Computer Assisted Radiology and Surgery ENGINEERING, BIOMEDICAL-RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
CiteScore
5.90
自引率
6.70%
发文量
243
审稿时长
6-12 weeks
期刊介绍: The International Journal for Computer Assisted Radiology and Surgery (IJCARS) is a peer-reviewed journal that provides a platform for closing the gap between medical and technical disciplines, and encourages interdisciplinary research and development activities in an international environment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信