基于随机模型的成本-效益分析的元模型降方差技术。

IF 3.1 3区 医学 Q2 HEALTH CARE SCIENCES & SERVICES
Medical Decision Making Pub Date : 2025-11-01 Epub Date: 2025-08-14 DOI:10.1177/0272989X251352210
Zongbo Li, Gregory S Knowlton, Margo M Wheatley, Samuel M Jenness, Eva A Enns
{"title":"基于随机模型的成本-效益分析的元模型降方差技术。","authors":"Zongbo Li, Gregory S Knowlton, Margo M Wheatley, Samuel M Jenness, Eva A Enns","doi":"10.1177/0272989X251352210","DOIUrl":null,"url":null,"abstract":"<p><p>PurposeWhen using stochastic models for cost-effectiveness analysis (CEA), run-to-run outcome variability arising from model stochasticity can sometimes exceed the change in outcomes resulting from an intervention, especially when individual-level efficacy is small, leading to counterintuitive results. This issue is compounded for probabilistic sensitivity analyses (PSAs), in which stochastic noise can obscure the influence of parameter uncertainty. This study evaluates meta-modeling as a variance-reduction technique to mitigate stochastic noise while preserving parameter uncertainty in PSAs.MethodsWe applied meta-modeling to 2 simulation models: 1) a 4-state Sick-Sicker model and 2) an agent-based HIV transmission model among men who have sex with men (MSM). We conducted a PSA and applied 3 meta-modeling techniques-linear regression, generalized additive models, and artificial neural networks-to reduce stochastic noise. Model performance was assessed using <i>R</i><sup>2</sup> and root mean squared error (RMSE) values on a validation dataset. We compared PSA results by examining scatter plots of incremental costs and quality-adjusted life-years (QALYs), cost-effectiveness acceptability curves (CEACs), and the occurrence of unintuitive results, such as interventions appearing to reduce QALYs due to stochastic noise.ResultsIn the Sick-Sicker model, stochastic noise increased variance in incremental costs and QALYs. Applying meta-modeling techniques substantially reduced this variance and nearly eliminated unintuitive results, with <i>R</i><sup>2</sup> and RMSE values indicating good model fit. In the HIV agent-based model, all 3 meta-models effectively reduced outcome variability while retaining parameter uncertainty, yielding more informative CEACs with higher probabilities of being cost-effective for the optimal strategy.ConclusionsMeta-modeling effectively reduces stochastic noise in simulation models while maintaining parameter uncertainty in PSA, enhancing the reliability of CEA results without requiring an impractical number of simulations.HighlightsWhen using complex stochastic models for cost-effectiveness analysis (CEA), stochastic noise can overwhelm intervention effects and obscure the impact of parameter uncertainty on CEA outcomes in probabilistic sensitivity analysis (PSA).Meta-modeling offers a solution by effectively reducing stochastic noise in complex stochastic simulation models without increasing computational burden, thereby improving the interpretability of PSA results.</p>","PeriodicalId":49839,"journal":{"name":"Medical Decision Making","volume":" ","pages":"976-986"},"PeriodicalIF":3.1000,"publicationDate":"2025-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Meta-Modeling as a Variance-Reduction Technique for Stochastic Model-Based Cost-Effectiveness Analyses.\",\"authors\":\"Zongbo Li, Gregory S Knowlton, Margo M Wheatley, Samuel M Jenness, Eva A Enns\",\"doi\":\"10.1177/0272989X251352210\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>PurposeWhen using stochastic models for cost-effectiveness analysis (CEA), run-to-run outcome variability arising from model stochasticity can sometimes exceed the change in outcomes resulting from an intervention, especially when individual-level efficacy is small, leading to counterintuitive results. This issue is compounded for probabilistic sensitivity analyses (PSAs), in which stochastic noise can obscure the influence of parameter uncertainty. This study evaluates meta-modeling as a variance-reduction technique to mitigate stochastic noise while preserving parameter uncertainty in PSAs.MethodsWe applied meta-modeling to 2 simulation models: 1) a 4-state Sick-Sicker model and 2) an agent-based HIV transmission model among men who have sex with men (MSM). We conducted a PSA and applied 3 meta-modeling techniques-linear regression, generalized additive models, and artificial neural networks-to reduce stochastic noise. Model performance was assessed using <i>R</i><sup>2</sup> and root mean squared error (RMSE) values on a validation dataset. We compared PSA results by examining scatter plots of incremental costs and quality-adjusted life-years (QALYs), cost-effectiveness acceptability curves (CEACs), and the occurrence of unintuitive results, such as interventions appearing to reduce QALYs due to stochastic noise.ResultsIn the Sick-Sicker model, stochastic noise increased variance in incremental costs and QALYs. Applying meta-modeling techniques substantially reduced this variance and nearly eliminated unintuitive results, with <i>R</i><sup>2</sup> and RMSE values indicating good model fit. In the HIV agent-based model, all 3 meta-models effectively reduced outcome variability while retaining parameter uncertainty, yielding more informative CEACs with higher probabilities of being cost-effective for the optimal strategy.ConclusionsMeta-modeling effectively reduces stochastic noise in simulation models while maintaining parameter uncertainty in PSA, enhancing the reliability of CEA results without requiring an impractical number of simulations.HighlightsWhen using complex stochastic models for cost-effectiveness analysis (CEA), stochastic noise can overwhelm intervention effects and obscure the impact of parameter uncertainty on CEA outcomes in probabilistic sensitivity analysis (PSA).Meta-modeling offers a solution by effectively reducing stochastic noise in complex stochastic simulation models without increasing computational burden, thereby improving the interpretability of PSA results.</p>\",\"PeriodicalId\":49839,\"journal\":{\"name\":\"Medical Decision Making\",\"volume\":\" \",\"pages\":\"976-986\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Medical Decision Making\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1177/0272989X251352210\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/8/14 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"HEALTH CARE SCIENCES & SERVICES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical Decision Making","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/0272989X251352210","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/8/14 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0

摘要

当使用随机模型进行成本-效果分析(CEA)时,由模型随机性引起的运行-运行结果变异性有时会超过干预导致的结果变化,特别是当个人水平的疗效很小时,导致反直觉的结果。这个问题在概率敏感性分析(psa)中更为复杂,其中随机噪声可以掩盖参数不确定性的影响。本研究评估了元建模作为一种方差减小技术,以减轻随机噪声,同时保留psa中的参数不确定性。方法采用元建模方法对2个模拟模型进行建模:1)4状态的Sick-Sicker模型和2)基于agent的男男性行为者(MSM) HIV传播模型。我们进行了PSA,并应用了3种元建模技术——线性回归、广义加性模型和人工神经网络——来减少随机噪声。使用验证数据集上的R2和均方根误差(RMSE)值评估模型性能。我们通过检查增量成本和质量调整寿命年(QALYs)的散点图、成本-效果可接受曲线(CEACs)以及非直观结果的发生(例如由于随机噪声而出现的干预措施似乎降低了QALYs)来比较PSA结果。结果在Sick-Sicker模型中,随机噪声增加了增量成本和质量年的方差。应用元建模技术大大减少了这种差异,几乎消除了不直观的结果,R2和RMSE值表明模型拟合良好。在基于HIV代理的模型中,所有3个元模型都有效地降低了结果的可变性,同时保留了参数的不确定性,产生了更多信息的ceac,并且对于最优策略来说,具有更高的成本效益概率。结论meta -modeling在保持PSA参数不确定性的同时,有效地降低了仿真模型中的随机噪声,提高了CEA结果的可靠性,而无需进行不切实际的模拟。当使用复杂的随机模型进行成本效益分析(CEA)时,随机噪声可能会掩盖干预效果,并模糊概率敏感性分析(PSA)中参数不确定性对成本效益分析结果的影响。元建模在不增加计算负担的情况下有效降低复杂随机模拟模型中的随机噪声,从而提高PSA结果的可解释性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Meta-Modeling as a Variance-Reduction Technique for Stochastic Model-Based Cost-Effectiveness Analyses.

PurposeWhen using stochastic models for cost-effectiveness analysis (CEA), run-to-run outcome variability arising from model stochasticity can sometimes exceed the change in outcomes resulting from an intervention, especially when individual-level efficacy is small, leading to counterintuitive results. This issue is compounded for probabilistic sensitivity analyses (PSAs), in which stochastic noise can obscure the influence of parameter uncertainty. This study evaluates meta-modeling as a variance-reduction technique to mitigate stochastic noise while preserving parameter uncertainty in PSAs.MethodsWe applied meta-modeling to 2 simulation models: 1) a 4-state Sick-Sicker model and 2) an agent-based HIV transmission model among men who have sex with men (MSM). We conducted a PSA and applied 3 meta-modeling techniques-linear regression, generalized additive models, and artificial neural networks-to reduce stochastic noise. Model performance was assessed using R2 and root mean squared error (RMSE) values on a validation dataset. We compared PSA results by examining scatter plots of incremental costs and quality-adjusted life-years (QALYs), cost-effectiveness acceptability curves (CEACs), and the occurrence of unintuitive results, such as interventions appearing to reduce QALYs due to stochastic noise.ResultsIn the Sick-Sicker model, stochastic noise increased variance in incremental costs and QALYs. Applying meta-modeling techniques substantially reduced this variance and nearly eliminated unintuitive results, with R2 and RMSE values indicating good model fit. In the HIV agent-based model, all 3 meta-models effectively reduced outcome variability while retaining parameter uncertainty, yielding more informative CEACs with higher probabilities of being cost-effective for the optimal strategy.ConclusionsMeta-modeling effectively reduces stochastic noise in simulation models while maintaining parameter uncertainty in PSA, enhancing the reliability of CEA results without requiring an impractical number of simulations.HighlightsWhen using complex stochastic models for cost-effectiveness analysis (CEA), stochastic noise can overwhelm intervention effects and obscure the impact of parameter uncertainty on CEA outcomes in probabilistic sensitivity analysis (PSA).Meta-modeling offers a solution by effectively reducing stochastic noise in complex stochastic simulation models without increasing computational burden, thereby improving the interpretability of PSA results.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Medical Decision Making
Medical Decision Making 医学-卫生保健
CiteScore
6.50
自引率
5.60%
发文量
146
审稿时长
6-12 weeks
期刊介绍: Medical Decision Making offers rigorous and systematic approaches to decision making that are designed to improve the health and clinical care of individuals and to assist with health care policy development. Using the fundamentals of decision analysis and theory, economic evaluation, and evidence based quality assessment, Medical Decision Making presents both theoretical and practical statistical and modeling techniques and methods from a variety of disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信