一种新的混合卷积和循环神经网络模型用于动态增强MRI垂体腺瘤自动分类。

IF 1.5 Q3 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
Milad Motamed, Mostafa Bastam, Seyed Mohamadreza Tabatabaie, Mohammadreza Elhaie, Daryoush Shahbazi-Gahrouei
{"title":"一种新的混合卷积和循环神经网络模型用于动态增强MRI垂体腺瘤自动分类。","authors":"Milad Motamed, Mostafa Bastam, Seyed Mohamadreza Tabatabaie, Mohammadreza Elhaie, Daryoush Shahbazi-Gahrouei","doi":"10.1007/s12194-025-00947-6","DOIUrl":null,"url":null,"abstract":"<p><p>Pituitary adenomas, ranging from subtle microadenomas to mass-effect macroadenomas, pose diagnostic challenges for radiologists due to increasing scan volumes and the complexity of dynamic contrast-enhanced MRI interpretation. A hybrid CNN-LSTM model was trained and validated on a multi-center dataset of 2,163 samples from Tehran and Babolsar, Iran. Transfer learning and preprocessing techniques (e.g., Wiener filters) were utilized to improve classification performance for microadenomas (< 10 mm) and macroadenomas (> 10 mm). The model achieved 90.5% accuracy, an area under the receiver operating characteristic curve (AUROC) of 0.92, and 89.6% sensitivity (93.5% for microadenomas, 88.3% for macroadenomas), outperforming standard CNNs by 5-18% across metrics. With a processing time of 0.17 s per scan, the model demonstrated robustness to variations in imaging conditions, including scanner differences and contrast variations, excelling in real-time detection and differentiation of adenoma subtypes. This dual-path approach, the first to synergize spatial and temporal MRI features for pituitary diagnostics, offers high precision and efficiency. Supported by comparisons with existing models, it provides a scalable, reproducible tool to improve patient outcomes, with potential adaptability to broader neuroimaging challenges.</p>","PeriodicalId":46252,"journal":{"name":"Radiological Physics and Technology","volume":" ","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2025-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A novel hybrid convolutional and recurrent neural network model for automatic pituitary adenoma classification using dynamic contrast-enhanced MRI.\",\"authors\":\"Milad Motamed, Mostafa Bastam, Seyed Mohamadreza Tabatabaie, Mohammadreza Elhaie, Daryoush Shahbazi-Gahrouei\",\"doi\":\"10.1007/s12194-025-00947-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Pituitary adenomas, ranging from subtle microadenomas to mass-effect macroadenomas, pose diagnostic challenges for radiologists due to increasing scan volumes and the complexity of dynamic contrast-enhanced MRI interpretation. A hybrid CNN-LSTM model was trained and validated on a multi-center dataset of 2,163 samples from Tehran and Babolsar, Iran. Transfer learning and preprocessing techniques (e.g., Wiener filters) were utilized to improve classification performance for microadenomas (< 10 mm) and macroadenomas (> 10 mm). The model achieved 90.5% accuracy, an area under the receiver operating characteristic curve (AUROC) of 0.92, and 89.6% sensitivity (93.5% for microadenomas, 88.3% for macroadenomas), outperforming standard CNNs by 5-18% across metrics. With a processing time of 0.17 s per scan, the model demonstrated robustness to variations in imaging conditions, including scanner differences and contrast variations, excelling in real-time detection and differentiation of adenoma subtypes. This dual-path approach, the first to synergize spatial and temporal MRI features for pituitary diagnostics, offers high precision and efficiency. Supported by comparisons with existing models, it provides a scalable, reproducible tool to improve patient outcomes, with potential adaptability to broader neuroimaging challenges.</p>\",\"PeriodicalId\":46252,\"journal\":{\"name\":\"Radiological Physics and Technology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2025-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Radiological Physics and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s12194-025-00947-6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radiological Physics and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12194-025-00947-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

摘要

垂体腺瘤,从细微的微腺瘤到质量效应大腺瘤,由于扫描体积的增加和动态对比增强MRI解释的复杂性,给放射科医生带来了诊断挑战。在来自伊朗德黑兰和Babolsar的2163个样本的多中心数据集上训练并验证了CNN-LSTM混合模型。迁移学习和预处理技术(如维纳滤波器)被用于提高微腺瘤(10毫米)的分类性能。该模型的准确率为90.5%,受试者工作特征曲线下面积(AUROC)为0.92,灵敏度为89.6%(微腺瘤为93.5%,大腺瘤为88.3%),在各指标上优于标准cnn 5-18%。该模型每次扫描的处理时间为0.17 s,对成像条件的变化(包括扫描仪差异和对比度变化)具有鲁棒性,在实时检测和区分腺瘤亚型方面表现出色。这种双路径方法,首先将空间和时间MRI特征协同用于垂体诊断,提供高精度和高效率。通过与现有模型的比较,它提供了一种可扩展的、可重复的工具,以改善患者的预后,并具有潜在的适应性,适用于更广泛的神经影像学挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A novel hybrid convolutional and recurrent neural network model for automatic pituitary adenoma classification using dynamic contrast-enhanced MRI.

Pituitary adenomas, ranging from subtle microadenomas to mass-effect macroadenomas, pose diagnostic challenges for radiologists due to increasing scan volumes and the complexity of dynamic contrast-enhanced MRI interpretation. A hybrid CNN-LSTM model was trained and validated on a multi-center dataset of 2,163 samples from Tehran and Babolsar, Iran. Transfer learning and preprocessing techniques (e.g., Wiener filters) were utilized to improve classification performance for microadenomas (< 10 mm) and macroadenomas (> 10 mm). The model achieved 90.5% accuracy, an area under the receiver operating characteristic curve (AUROC) of 0.92, and 89.6% sensitivity (93.5% for microadenomas, 88.3% for macroadenomas), outperforming standard CNNs by 5-18% across metrics. With a processing time of 0.17 s per scan, the model demonstrated robustness to variations in imaging conditions, including scanner differences and contrast variations, excelling in real-time detection and differentiation of adenoma subtypes. This dual-path approach, the first to synergize spatial and temporal MRI features for pituitary diagnostics, offers high precision and efficiency. Supported by comparisons with existing models, it provides a scalable, reproducible tool to improve patient outcomes, with potential adaptability to broader neuroimaging challenges.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Radiological Physics and Technology
Radiological Physics and Technology RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING-
CiteScore
3.00
自引率
12.50%
发文量
40
期刊介绍: The purpose of the journal Radiological Physics and Technology is to provide a forum for sharing new knowledge related to research and development in radiological science and technology, including medical physics and radiological technology in diagnostic radiology, nuclear medicine, and radiation therapy among many other radiological disciplines, as well as to contribute to progress and improvement in medical practice and patient health care.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信