{"title":"小鼠断奶前后母体胰岛的转录组修饰。","authors":"Xadeni Burgos-Gamez , Paulina Morales-Castillo , Alain Hernández-Vázquez , Karina Pastén-Hidalgo , Francisco García-Vázquez , Cristina Fernandez-Mejia","doi":"10.1016/j.mce.2025.112642","DOIUrl":null,"url":null,"abstract":"<div><div>Identifying the mechanisms and molecular factors that enhance beta-cell mass is crucial for developing strategies to combat diabetes, as beta-cell mass declines with disease progression. Recent research has indicated an increase in beta-cell proliferation and a significant islet expansion around the weaning period in mice. This study aims to identify transcripts associated with changes in the islets around weaning—a physiological stage previously unexplored in islets. A ribonucleic acid (RNA) sequencing analysis of the transcriptome was performed at four key time points: the end of lactation, when beta-cell proliferation increases; the day of weaning, when the hormonal and metabolic environment transitions from lactation to the non-lactating stage; the third day post-weaning, when islet area peaks, as observed in our prior studies; and in age-matched female control mice. The results revealed dynamic transcriptomic changes. The messenger ribonucleic acid (mRNA) expression levels of genes regulated by prolactin, including its receptor, signaling inhibitor <em>Cish</em>, tryptophan hydroxylase, and osteoprotegerin, increased during lactation and subsequently declined. Plasma prolactin concentrations rose during lactation, but plasma osteoprotegerin levels remained stable across groups. Notably, no changes were observed in known prolactin-regulated cyclins that positively influence the cell cycle, such as <em>Ccna2</em>, <em>Ccnb1</em>, and <em>Ccnb2</em>. However, a decrease in the expression of <em>Cdkn1a</em>, a negative regulator of the cell cycle, was noted. Surprisingly, microscopy analysis indicated increased apoptosis markers in islet peripheral cells that were negative for insulin immunostaining. This study is the first to identify transcriptomic and cellular changes around weaning, offering new insights into islet mass plasticity.</div></div>","PeriodicalId":18707,"journal":{"name":"Molecular and Cellular Endocrinology","volume":"609 ","pages":"Article 112642"},"PeriodicalIF":3.6000,"publicationDate":"2025-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Transcriptomic modifications in maternal pancreatic islets during the period around weaning in mice\",\"authors\":\"Xadeni Burgos-Gamez , Paulina Morales-Castillo , Alain Hernández-Vázquez , Karina Pastén-Hidalgo , Francisco García-Vázquez , Cristina Fernandez-Mejia\",\"doi\":\"10.1016/j.mce.2025.112642\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Identifying the mechanisms and molecular factors that enhance beta-cell mass is crucial for developing strategies to combat diabetes, as beta-cell mass declines with disease progression. Recent research has indicated an increase in beta-cell proliferation and a significant islet expansion around the weaning period in mice. This study aims to identify transcripts associated with changes in the islets around weaning—a physiological stage previously unexplored in islets. A ribonucleic acid (RNA) sequencing analysis of the transcriptome was performed at four key time points: the end of lactation, when beta-cell proliferation increases; the day of weaning, when the hormonal and metabolic environment transitions from lactation to the non-lactating stage; the third day post-weaning, when islet area peaks, as observed in our prior studies; and in age-matched female control mice. The results revealed dynamic transcriptomic changes. The messenger ribonucleic acid (mRNA) expression levels of genes regulated by prolactin, including its receptor, signaling inhibitor <em>Cish</em>, tryptophan hydroxylase, and osteoprotegerin, increased during lactation and subsequently declined. Plasma prolactin concentrations rose during lactation, but plasma osteoprotegerin levels remained stable across groups. Notably, no changes were observed in known prolactin-regulated cyclins that positively influence the cell cycle, such as <em>Ccna2</em>, <em>Ccnb1</em>, and <em>Ccnb2</em>. However, a decrease in the expression of <em>Cdkn1a</em>, a negative regulator of the cell cycle, was noted. Surprisingly, microscopy analysis indicated increased apoptosis markers in islet peripheral cells that were negative for insulin immunostaining. This study is the first to identify transcriptomic and cellular changes around weaning, offering new insights into islet mass plasticity.</div></div>\",\"PeriodicalId\":18707,\"journal\":{\"name\":\"Molecular and Cellular Endocrinology\",\"volume\":\"609 \",\"pages\":\"Article 112642\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2025-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular and Cellular Endocrinology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0303720725001935\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular and Cellular Endocrinology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0303720725001935","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Transcriptomic modifications in maternal pancreatic islets during the period around weaning in mice
Identifying the mechanisms and molecular factors that enhance beta-cell mass is crucial for developing strategies to combat diabetes, as beta-cell mass declines with disease progression. Recent research has indicated an increase in beta-cell proliferation and a significant islet expansion around the weaning period in mice. This study aims to identify transcripts associated with changes in the islets around weaning—a physiological stage previously unexplored in islets. A ribonucleic acid (RNA) sequencing analysis of the transcriptome was performed at four key time points: the end of lactation, when beta-cell proliferation increases; the day of weaning, when the hormonal and metabolic environment transitions from lactation to the non-lactating stage; the third day post-weaning, when islet area peaks, as observed in our prior studies; and in age-matched female control mice. The results revealed dynamic transcriptomic changes. The messenger ribonucleic acid (mRNA) expression levels of genes regulated by prolactin, including its receptor, signaling inhibitor Cish, tryptophan hydroxylase, and osteoprotegerin, increased during lactation and subsequently declined. Plasma prolactin concentrations rose during lactation, but plasma osteoprotegerin levels remained stable across groups. Notably, no changes were observed in known prolactin-regulated cyclins that positively influence the cell cycle, such as Ccna2, Ccnb1, and Ccnb2. However, a decrease in the expression of Cdkn1a, a negative regulator of the cell cycle, was noted. Surprisingly, microscopy analysis indicated increased apoptosis markers in islet peripheral cells that were negative for insulin immunostaining. This study is the first to identify transcriptomic and cellular changes around weaning, offering new insights into islet mass plasticity.
期刊介绍:
Molecular and Cellular Endocrinology was established in 1974 to meet the demand for integrated publication on all aspects related to the genetic and biochemical effects, synthesis and secretions of extracellular signals (hormones, neurotransmitters, etc.) and to the understanding of cellular regulatory mechanisms involved in hormonal control.