脂肪-间充质干细胞中Mitofusin 2和褪黑素的联合缺失对大鼠急性缺血性脑卒中的保护有额外的好处。

IF 6.1 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Antioxidants & redox signaling Pub Date : 2025-09-01 Epub Date: 2025-08-14 DOI:10.1177/15230864251364881
Chien-Hui Yang, Hung-Sheng Lin, Han-Tan Chai, Yi-Ling Chen, Hon-Kan Yip, Kuan-Hung Chen
{"title":"脂肪-间充质干细胞中Mitofusin 2和褪黑素的联合缺失对大鼠急性缺血性脑卒中的保护有额外的好处。","authors":"Chien-Hui Yang, Hung-Sheng Lin, Han-Tan Chai, Yi-Ling Chen, Hon-Kan Yip, Kuan-Hung Chen","doi":"10.1177/15230864251364881","DOIUrl":null,"url":null,"abstract":"<p><p><b><i>Background and Aims:</i></b> Ischemic stroke (IS) remains the third leading cause of death, and the treatment of acute ischemic stroke (AIS) is still a formidable challenge to clinicians. This study tested the hypothesis that combined silencing Mnf2 gene in adipose-derived mesenchymal stem cells (ADMSCs<sup>sil-Mnf2</sup>) and melatonin (Mel) therapy was superior to monotherapy on attenuating the brain infarct volume (BIV) and improving neurological function in AIS rats. <b><i>Results:</i></b> <i>In vitro</i> and <i>in vivo</i> studies were conducted. <i>In vitro</i> results showed that as compared with the controls (<i>i.e.,</i> ADMSCs/N2a cells), the cellular/protein levels of oxidative stress/reactive oxygen species (ROS)/mitochondrial and DNA damaged/apoptotic/cell stress signaling (tumor necrosis factor [TNF] receptor associated factor 6/ apoptosis signal regulating kinase/MKK<sup>4/7</sup>/JUN/ERK<sup>1/2</sup>/c-Jun) biomarkers were significantly increased in these cells treated by H<sub>2</sub>O<sub>2</sub> that were significantly reversed by ADMSCs<sup>sil-Mnf2</sup> or Mel and further significantly reversed by combined therapy (all <i>p</i> < 0.0001). Animals were categorized into groups 1 (sham-operated control)/2 (AIS)/3 (AIS + Mel)/4 (AIS + ADMSCs<sup>sil-Mnf2</sup>)/5 (AIS + Mel-ADMSCs<sup>sil-Mnf2</sup>) and euthanized by day 28 after AIS. By day 28, the BIV and the brain infarct area (BIA) were lowest in group 1/highest in group 2/significantly lower in group 5 than in groups 3 and 4/significantly increased in group 4 than in group 3, whereas the neurological function displayed an opposite manner of BIV (all <i>p</i> < 0.0001). The protein expressions of oxidative stress/mitochondrial damaged/apoptotic/inflammatory/cell stress signaling biomarkers displayed an identical pattern, whereas the protein expressions of mitochondrial biogenesis/antioxidants and cellular level of neuronal cells exhibited an opposite manner of BIV among the groups (all <i>p</i> < 0.0001). <b><i>Innovation and Conclusion:</i></b> ADMSCs<sup>sil-Mnf2</sup> and Mel combined therapy offered synergic effects on attenuating the BIV/BIA and preserving neurological function in rodents after AIS mainly through suppressing oxidative stress/ROS/inflammatory signalings and upregulating antioxidants. Combined ADMSCs<sup>sil-Mnf2</sup> and Mel therapy offered additional benefits on protecting the brain against AIS in rodents. <i>Antioxid. Redox Signal.</i> 43, 427-447.</p>","PeriodicalId":8011,"journal":{"name":"Antioxidants & redox signaling","volume":" ","pages":"427-447"},"PeriodicalIF":6.1000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Combined Deletion of Mitofusin 2 in Adipose-Mesenchymal Derived Stem Cells and Melatonin Offers Additional Benefits on Protecting the Brain Against Acute Ischemic Stroke in Rat.\",\"authors\":\"Chien-Hui Yang, Hung-Sheng Lin, Han-Tan Chai, Yi-Ling Chen, Hon-Kan Yip, Kuan-Hung Chen\",\"doi\":\"10.1177/15230864251364881\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><b><i>Background and Aims:</i></b> Ischemic stroke (IS) remains the third leading cause of death, and the treatment of acute ischemic stroke (AIS) is still a formidable challenge to clinicians. This study tested the hypothesis that combined silencing Mnf2 gene in adipose-derived mesenchymal stem cells (ADMSCs<sup>sil-Mnf2</sup>) and melatonin (Mel) therapy was superior to monotherapy on attenuating the brain infarct volume (BIV) and improving neurological function in AIS rats. <b><i>Results:</i></b> <i>In vitro</i> and <i>in vivo</i> studies were conducted. <i>In vitro</i> results showed that as compared with the controls (<i>i.e.,</i> ADMSCs/N2a cells), the cellular/protein levels of oxidative stress/reactive oxygen species (ROS)/mitochondrial and DNA damaged/apoptotic/cell stress signaling (tumor necrosis factor [TNF] receptor associated factor 6/ apoptosis signal regulating kinase/MKK<sup>4/7</sup>/JUN/ERK<sup>1/2</sup>/c-Jun) biomarkers were significantly increased in these cells treated by H<sub>2</sub>O<sub>2</sub> that were significantly reversed by ADMSCs<sup>sil-Mnf2</sup> or Mel and further significantly reversed by combined therapy (all <i>p</i> < 0.0001). Animals were categorized into groups 1 (sham-operated control)/2 (AIS)/3 (AIS + Mel)/4 (AIS + ADMSCs<sup>sil-Mnf2</sup>)/5 (AIS + Mel-ADMSCs<sup>sil-Mnf2</sup>) and euthanized by day 28 after AIS. By day 28, the BIV and the brain infarct area (BIA) were lowest in group 1/highest in group 2/significantly lower in group 5 than in groups 3 and 4/significantly increased in group 4 than in group 3, whereas the neurological function displayed an opposite manner of BIV (all <i>p</i> < 0.0001). The protein expressions of oxidative stress/mitochondrial damaged/apoptotic/inflammatory/cell stress signaling biomarkers displayed an identical pattern, whereas the protein expressions of mitochondrial biogenesis/antioxidants and cellular level of neuronal cells exhibited an opposite manner of BIV among the groups (all <i>p</i> < 0.0001). <b><i>Innovation and Conclusion:</i></b> ADMSCs<sup>sil-Mnf2</sup> and Mel combined therapy offered synergic effects on attenuating the BIV/BIA and preserving neurological function in rodents after AIS mainly through suppressing oxidative stress/ROS/inflammatory signalings and upregulating antioxidants. Combined ADMSCs<sup>sil-Mnf2</sup> and Mel therapy offered additional benefits on protecting the brain against AIS in rodents. <i>Antioxid. Redox Signal.</i> 43, 427-447.</p>\",\"PeriodicalId\":8011,\"journal\":{\"name\":\"Antioxidants & redox signaling\",\"volume\":\" \",\"pages\":\"427-447\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2025-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Antioxidants & redox signaling\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1177/15230864251364881\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/8/14 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Antioxidants & redox signaling","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1177/15230864251364881","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/8/14 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

背景和目的:缺血性脑卒中(IS)仍然是第三大死亡原因,急性缺血性脑卒中(AIS)的治疗仍然是临床医生面临的巨大挑战。本研究验证了联合沉默脂肪源性间充质干细胞中Mnf2基因(ADMSCssil-Mnf2)和褪黑素(Mel)治疗在减轻AIS大鼠脑梗死体积(BIV)和改善神经功能方面优于单一治疗的假设。结果:进行了体外和体内研究。体外实验结果显示,与对照组(即ADMSCs/N2a细胞)相比,氧化应激/活性氧(ROS)/线粒体和DNA损伤/凋亡/细胞应激信号(肿瘤坏死因子[TNF]受体相关因子6/凋亡信号调节激酶/MKK4/7/JUN/ERK1/2/c-Jun)生物标志物的细胞/蛋白质水平在H2O2处理的细胞中显著升高,ADMSCssil-Mnf2或Mel显著逆转,联合治疗进一步显著逆转(均p < 0.0001)。将动物分为1组(假手术对照组)/2组(AIS)/3组(AIS + Mel)/4组(AIS + ADMSCssil-Mnf2)/5组(AIS + Mel-ADMSCssil-Mnf2),于AIS术后第28天实施安乐死。第28天,BIV和脑梗死面积(BIA) 1组最低/ 2组最高/ 5组显著低于3组,4组显著高于3组,而神经功能与BIV相反(均p < 0.0001)。氧化应激/线粒体损伤/凋亡/炎症/细胞应激信号生物标志物的蛋白表达呈现相同的模式,而线粒体生物发生/抗氧化剂蛋白表达和神经元细胞水平在各组间呈现相反的模式(均p < 0.0001)。创新与结论:ADMSCssil-Mnf2与Mel联合治疗主要通过抑制氧化应激/ROS/炎症信号和上调抗氧化剂,对AIS后啮齿动物的BIV/BIA和神经功能的保护具有协同作用。admscsil - mnf2和Mel联合治疗在保护啮齿动物大脑免受AIS方面提供了额外的益处。Antioxid。氧化还原信号:00000 - 00000。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Combined Deletion of Mitofusin 2 in Adipose-Mesenchymal Derived Stem Cells and Melatonin Offers Additional Benefits on Protecting the Brain Against Acute Ischemic Stroke in Rat.

Background and Aims: Ischemic stroke (IS) remains the third leading cause of death, and the treatment of acute ischemic stroke (AIS) is still a formidable challenge to clinicians. This study tested the hypothesis that combined silencing Mnf2 gene in adipose-derived mesenchymal stem cells (ADMSCssil-Mnf2) and melatonin (Mel) therapy was superior to monotherapy on attenuating the brain infarct volume (BIV) and improving neurological function in AIS rats. Results: In vitro and in vivo studies were conducted. In vitro results showed that as compared with the controls (i.e., ADMSCs/N2a cells), the cellular/protein levels of oxidative stress/reactive oxygen species (ROS)/mitochondrial and DNA damaged/apoptotic/cell stress signaling (tumor necrosis factor [TNF] receptor associated factor 6/ apoptosis signal regulating kinase/MKK4/7/JUN/ERK1/2/c-Jun) biomarkers were significantly increased in these cells treated by H2O2 that were significantly reversed by ADMSCssil-Mnf2 or Mel and further significantly reversed by combined therapy (all p < 0.0001). Animals were categorized into groups 1 (sham-operated control)/2 (AIS)/3 (AIS + Mel)/4 (AIS + ADMSCssil-Mnf2)/5 (AIS + Mel-ADMSCssil-Mnf2) and euthanized by day 28 after AIS. By day 28, the BIV and the brain infarct area (BIA) were lowest in group 1/highest in group 2/significantly lower in group 5 than in groups 3 and 4/significantly increased in group 4 than in group 3, whereas the neurological function displayed an opposite manner of BIV (all p < 0.0001). The protein expressions of oxidative stress/mitochondrial damaged/apoptotic/inflammatory/cell stress signaling biomarkers displayed an identical pattern, whereas the protein expressions of mitochondrial biogenesis/antioxidants and cellular level of neuronal cells exhibited an opposite manner of BIV among the groups (all p < 0.0001). Innovation and Conclusion: ADMSCssil-Mnf2 and Mel combined therapy offered synergic effects on attenuating the BIV/BIA and preserving neurological function in rodents after AIS mainly through suppressing oxidative stress/ROS/inflammatory signalings and upregulating antioxidants. Combined ADMSCssil-Mnf2 and Mel therapy offered additional benefits on protecting the brain against AIS in rodents. Antioxid. Redox Signal. 43, 427-447.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Antioxidants & redox signaling
Antioxidants & redox signaling 生物-内分泌学与代谢
CiteScore
14.10
自引率
1.50%
发文量
170
审稿时长
3-6 weeks
期刊介绍: Antioxidants & Redox Signaling (ARS) is the leading peer-reviewed journal dedicated to understanding the vital impact of oxygen and oxidation-reduction (redox) processes on human health and disease. The Journal explores key issues in genetic, pharmaceutical, and nutritional redox-based therapeutics. Cutting-edge research focuses on structural biology, stem cells, regenerative medicine, epigenetics, imaging, clinical outcomes, and preventive and therapeutic nutrition, among other areas. ARS has expanded to create two unique foci within one journal: ARS Discoveries and ARS Therapeutics. ARS Discoveries (24 issues) publishes the highest-caliber breakthroughs in basic and applied research. ARS Therapeutics (12 issues) is the first publication of its kind that will help enhance the entire field of redox biology by showcasing the potential of redox sciences to change health outcomes. ARS coverage includes: -ROS/RNS as messengers -Gaseous signal transducers -Hypoxia and tissue oxygenation -microRNA -Prokaryotic systems -Lessons from plant biology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信