基于层次高斯过程回归的耐高温聚酰亚胺数据驱动设计。

IF 2.9 2区 化学 Q3 CHEMISTRY, PHYSICAL
Jiale Zhang, Aocheng Fan, Ziqi Wang, Lei Zheng, Yu Liu*, Zhijian Wang* and Peng Kang*, 
{"title":"基于层次高斯过程回归的耐高温聚酰亚胺数据驱动设计。","authors":"Jiale Zhang,&nbsp;Aocheng Fan,&nbsp;Ziqi Wang,&nbsp;Lei Zheng,&nbsp;Yu Liu*,&nbsp;Zhijian Wang* and Peng Kang*,&nbsp;","doi":"10.1021/acs.jpcb.5c03717","DOIUrl":null,"url":null,"abstract":"<p >Accurate prediction of Tg for polyimides (PIs) is essential for assessing material performance in high-temperature applications in aerospace, electronics, microelectronics, and flexible display technology. However, experimental measurements remain critically challenging due to the labor-intensive synthesis, conventional instrument limits, and time-consuming characterization processes. Meanwhile, force field limitations, timescale discrepancy, and validation difficulties exist in the prediction of Tg for PIs using molecular dynamic simulation. In this study, we introduce a hierarchical Gaussian process regression machine learning method that integrates prior knowledge to predict Tg for PIs with small-sample data sets. We employ RDKit for molecular descriptor calculation and feature selection. Twenty-one key descriptors are identified, and exceptional model performance with a coefficient of determination <i>R</i><sup>2</sup> of 0.98/0.74 on the training/test set is achieved, surpassing conventional machine learning approaches. We further use Shapley additive explanations analysis to study the actionable insights for designing thermally stable PIs. The number of rotatable bonds and minimum partial charge act as dominant factors influencing Tg. Validations through experimental synthesis and molecular dynamics simulations confirm that the prediction errors are below 15%, while a Bayesian update strategy employing a radial basis function kernel corrected systematic underestimation in the high-Tg regime (&gt;270 °C). This work provides a robust, validated Tg prediction tool, elucidates critical structure–property relationships, and establishes a transferable framework for data-driven materials design, advancing the development of high-performance polymers.</p>","PeriodicalId":60,"journal":{"name":"The Journal of Physical Chemistry B","volume":"129 34","pages":"8821–8831"},"PeriodicalIF":2.9000,"publicationDate":"2025-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Data-Driven Design of High-Temperature-Resistant Polyimides Using Hierarchical Gaussian Process Regression\",\"authors\":\"Jiale Zhang,&nbsp;Aocheng Fan,&nbsp;Ziqi Wang,&nbsp;Lei Zheng,&nbsp;Yu Liu*,&nbsp;Zhijian Wang* and Peng Kang*,&nbsp;\",\"doi\":\"10.1021/acs.jpcb.5c03717\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Accurate prediction of Tg for polyimides (PIs) is essential for assessing material performance in high-temperature applications in aerospace, electronics, microelectronics, and flexible display technology. However, experimental measurements remain critically challenging due to the labor-intensive synthesis, conventional instrument limits, and time-consuming characterization processes. Meanwhile, force field limitations, timescale discrepancy, and validation difficulties exist in the prediction of Tg for PIs using molecular dynamic simulation. In this study, we introduce a hierarchical Gaussian process regression machine learning method that integrates prior knowledge to predict Tg for PIs with small-sample data sets. We employ RDKit for molecular descriptor calculation and feature selection. Twenty-one key descriptors are identified, and exceptional model performance with a coefficient of determination <i>R</i><sup>2</sup> of 0.98/0.74 on the training/test set is achieved, surpassing conventional machine learning approaches. We further use Shapley additive explanations analysis to study the actionable insights for designing thermally stable PIs. The number of rotatable bonds and minimum partial charge act as dominant factors influencing Tg. Validations through experimental synthesis and molecular dynamics simulations confirm that the prediction errors are below 15%, while a Bayesian update strategy employing a radial basis function kernel corrected systematic underestimation in the high-Tg regime (&gt;270 °C). This work provides a robust, validated Tg prediction tool, elucidates critical structure–property relationships, and establishes a transferable framework for data-driven materials design, advancing the development of high-performance polymers.</p>\",\"PeriodicalId\":60,\"journal\":{\"name\":\"The Journal of Physical Chemistry B\",\"volume\":\"129 34\",\"pages\":\"8821–8831\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Physical Chemistry B\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.jpcb.5c03717\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry B","FirstCategoryId":"1","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jpcb.5c03717","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

准确预测聚酰亚胺(pi)的Tg对于评估材料在航空航天、电子、微电子和柔性显示技术等高温应用中的性能至关重要。然而,由于劳动密集型的合成、传统仪器的限制和耗时的表征过程,实验测量仍然具有极大的挑战性。同时,分子动力学模拟预测pi的Tg存在力场限制、时间尺度差异和验证困难等问题。在本研究中,我们引入了一种分层高斯过程回归机器学习方法,该方法集成了先验知识来预测具有小样本数据集的pi的Tg。我们使用RDKit进行分子描述符计算和特征选择。识别了21个关键描述符,并且在训练/测试集上实现了具有0.98/0.74决定系数的卓越模型性能,超越了传统的机器学习方法。我们进一步使用Shapley加性解释分析来研究设计热稳定pi的可行见解。可旋转键数和最小部分电荷是影响Tg的主要因素。通过实验合成和分子动力学模拟的验证证实,预测误差低于15%,而采用径向基函数核的贝叶斯更新策略纠正了高tg区(>270°C)的系统低估。这项工作提供了一个强大的、经过验证的Tg预测工具,阐明了关键的结构-性能关系,并为数据驱动的材料设计建立了一个可转移的框架,促进了高性能聚合物的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Data-Driven Design of High-Temperature-Resistant Polyimides Using Hierarchical Gaussian Process Regression

Data-Driven Design of High-Temperature-Resistant Polyimides Using Hierarchical Gaussian Process Regression

Accurate prediction of Tg for polyimides (PIs) is essential for assessing material performance in high-temperature applications in aerospace, electronics, microelectronics, and flexible display technology. However, experimental measurements remain critically challenging due to the labor-intensive synthesis, conventional instrument limits, and time-consuming characterization processes. Meanwhile, force field limitations, timescale discrepancy, and validation difficulties exist in the prediction of Tg for PIs using molecular dynamic simulation. In this study, we introduce a hierarchical Gaussian process regression machine learning method that integrates prior knowledge to predict Tg for PIs with small-sample data sets. We employ RDKit for molecular descriptor calculation and feature selection. Twenty-one key descriptors are identified, and exceptional model performance with a coefficient of determination R2 of 0.98/0.74 on the training/test set is achieved, surpassing conventional machine learning approaches. We further use Shapley additive explanations analysis to study the actionable insights for designing thermally stable PIs. The number of rotatable bonds and minimum partial charge act as dominant factors influencing Tg. Validations through experimental synthesis and molecular dynamics simulations confirm that the prediction errors are below 15%, while a Bayesian update strategy employing a radial basis function kernel corrected systematic underestimation in the high-Tg regime (>270 °C). This work provides a robust, validated Tg prediction tool, elucidates critical structure–property relationships, and establishes a transferable framework for data-driven materials design, advancing the development of high-performance polymers.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.80
自引率
9.10%
发文量
965
审稿时长
1.6 months
期刊介绍: An essential criterion for acceptance of research articles in the journal is that they provide new physical insight. Please refer to the New Physical Insights virtual issue on what constitutes new physical insight. Manuscripts that are essentially reporting data or applications of data are, in general, not suitable for publication in JPC B.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信