一种基于细节增强和双分支特征融合的多模态医学图像融合方法

IF 2.5 4区 计算机科学 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Kun Zhang, Hui Yuan, Zhongwei Zhang, PengPeng Sun
{"title":"一种基于细节增强和双分支特征融合的多模态医学图像融合方法","authors":"Kun Zhang,&nbsp;Hui Yuan,&nbsp;Zhongwei Zhang,&nbsp;PengPeng Sun","doi":"10.1002/ima.70181","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Multimodal medical image fusion integrates effective information from different modal images and integrates salient and complementary features, which can more comprehensively describe the condition of lesions and make medical diagnosis results more reliable. This paper proposes a multimodal medical image fusion method based on image detail enhancement and dual-branch feature fusion (DEDF). First, the source images are preprocessed by guided filtering to enhance important details and improve the fusion and visualization effects. Then, local extreme maps are used as guides to smooth the source images. Finally, a DEDF mechanism based on guided filtering and bilateral filtering is established to obtain multiscale bright and dark feature maps, as well as base images of different modalities, which are fused to obtain a more comprehensive medical image and improve the accuracy of medical diagnosis results. Extensive experiments, compared qualitatively and quantitatively with various state-of-the-art medical image fusion methods, validate the superior fusion performance and effectiveness of the proposed method.</p>\n </div>","PeriodicalId":14027,"journal":{"name":"International Journal of Imaging Systems and Technology","volume":"35 5","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2025-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Novel Multimodal Medical Image Fusion Method Based on Detail Enhancement and Dual-Branch Feature Fusion\",\"authors\":\"Kun Zhang,&nbsp;Hui Yuan,&nbsp;Zhongwei Zhang,&nbsp;PengPeng Sun\",\"doi\":\"10.1002/ima.70181\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Multimodal medical image fusion integrates effective information from different modal images and integrates salient and complementary features, which can more comprehensively describe the condition of lesions and make medical diagnosis results more reliable. This paper proposes a multimodal medical image fusion method based on image detail enhancement and dual-branch feature fusion (DEDF). First, the source images are preprocessed by guided filtering to enhance important details and improve the fusion and visualization effects. Then, local extreme maps are used as guides to smooth the source images. Finally, a DEDF mechanism based on guided filtering and bilateral filtering is established to obtain multiscale bright and dark feature maps, as well as base images of different modalities, which are fused to obtain a more comprehensive medical image and improve the accuracy of medical diagnosis results. Extensive experiments, compared qualitatively and quantitatively with various state-of-the-art medical image fusion methods, validate the superior fusion performance and effectiveness of the proposed method.</p>\\n </div>\",\"PeriodicalId\":14027,\"journal\":{\"name\":\"International Journal of Imaging Systems and Technology\",\"volume\":\"35 5\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-08-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Imaging Systems and Technology\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ima.70181\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Imaging Systems and Technology","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ima.70181","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

多模态医学图像融合融合了不同模态图像的有效信息,融合了显著特征和互补特征,可以更全面地描述病变的状况,使医学诊断结果更加可靠。提出了一种基于图像细节增强和双分支特征融合(DEDF)的多模态医学图像融合方法。首先,对源图像进行引导滤波预处理,增强重要细节,提高融合效果和可视化效果;然后,利用局部极值图作为导线对源图像进行平滑处理。最后,建立基于引导滤波和双边滤波的DEDF机制,获得多尺度明暗特征图,以及不同模态的基础图像,融合得到更全面的医学图像,提高医学诊断结果的准确性。大量的实验,定性和定量地比较了各种最先进的医学图像融合方法,验证了该方法优越的融合性能和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Novel Multimodal Medical Image Fusion Method Based on Detail Enhancement and Dual-Branch Feature Fusion

Multimodal medical image fusion integrates effective information from different modal images and integrates salient and complementary features, which can more comprehensively describe the condition of lesions and make medical diagnosis results more reliable. This paper proposes a multimodal medical image fusion method based on image detail enhancement and dual-branch feature fusion (DEDF). First, the source images are preprocessed by guided filtering to enhance important details and improve the fusion and visualization effects. Then, local extreme maps are used as guides to smooth the source images. Finally, a DEDF mechanism based on guided filtering and bilateral filtering is established to obtain multiscale bright and dark feature maps, as well as base images of different modalities, which are fused to obtain a more comprehensive medical image and improve the accuracy of medical diagnosis results. Extensive experiments, compared qualitatively and quantitatively with various state-of-the-art medical image fusion methods, validate the superior fusion performance and effectiveness of the proposed method.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Imaging Systems and Technology
International Journal of Imaging Systems and Technology 工程技术-成像科学与照相技术
CiteScore
6.90
自引率
6.10%
发文量
138
审稿时长
3 months
期刊介绍: The International Journal of Imaging Systems and Technology (IMA) is a forum for the exchange of ideas and results relevant to imaging systems, including imaging physics and informatics. The journal covers all imaging modalities in humans and animals. IMA accepts technically sound and scientifically rigorous research in the interdisciplinary field of imaging, including relevant algorithmic research and hardware and software development, and their applications relevant to medical research. The journal provides a platform to publish original research in structural and functional imaging. The journal is also open to imaging studies of the human body and on animals that describe novel diagnostic imaging and analyses methods. Technical, theoretical, and clinical research in both normal and clinical populations is encouraged. Submissions describing methods, software, databases, replication studies as well as negative results are also considered. The scope of the journal includes, but is not limited to, the following in the context of biomedical research: Imaging and neuro-imaging modalities: structural MRI, functional MRI, PET, SPECT, CT, ultrasound, EEG, MEG, NIRS etc.; Neuromodulation and brain stimulation techniques such as TMS and tDCS; Software and hardware for imaging, especially related to human and animal health; Image segmentation in normal and clinical populations; Pattern analysis and classification using machine learning techniques; Computational modeling and analysis; Brain connectivity and connectomics; Systems-level characterization of brain function; Neural networks and neurorobotics; Computer vision, based on human/animal physiology; Brain-computer interface (BCI) technology; Big data, databasing and data mining.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信