磁性弹性体磁流变特性的微观模拟

IF 1.1 4区 化学 Q4 CHEMISTRY, PHYSICAL
A. Yu. Musikhin, A. Yu. Zubarev
{"title":"磁性弹性体磁流变特性的微观模拟","authors":"A. Yu. Musikhin,&nbsp;A. Yu. Zubarev","doi":"10.1134/S1061933X25600691","DOIUrl":null,"url":null,"abstract":"<p>This paper proposes a theoretical model for the magnetorheological properties of magnetic elastomers composed of micron-sized particles, which are magnetizable, have no intrinsic magnetic moment, and occur in a soft polymer medium. The study examines two types of composites: initially isotropic ones (synthesized in the absence of magnetic field) and anisotropic ones (polymerized in a magnetic field promoting aggregation of the particles into anisotropic structures). The data obtained show that the formation of anisotropic structures at the stage of the synthesis leads to a substantial increase in the macroscopic shear rigidity of the composite. The theoretical results are in quantitative agreement with experimental data.</p>","PeriodicalId":521,"journal":{"name":"Colloid Journal","volume":"87 4","pages":"524 - 536"},"PeriodicalIF":1.1000,"publicationDate":"2025-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Microscopic Simulation of Magnetorheological Properties in Magnetic Elastomers\",\"authors\":\"A. Yu. Musikhin,&nbsp;A. Yu. Zubarev\",\"doi\":\"10.1134/S1061933X25600691\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper proposes a theoretical model for the magnetorheological properties of magnetic elastomers composed of micron-sized particles, which are magnetizable, have no intrinsic magnetic moment, and occur in a soft polymer medium. The study examines two types of composites: initially isotropic ones (synthesized in the absence of magnetic field) and anisotropic ones (polymerized in a magnetic field promoting aggregation of the particles into anisotropic structures). The data obtained show that the formation of anisotropic structures at the stage of the synthesis leads to a substantial increase in the macroscopic shear rigidity of the composite. The theoretical results are in quantitative agreement with experimental data.</p>\",\"PeriodicalId\":521,\"journal\":{\"name\":\"Colloid Journal\",\"volume\":\"87 4\",\"pages\":\"524 - 536\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2025-08-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Colloid Journal\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S1061933X25600691\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Colloid Journal","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1134/S1061933X25600691","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了由微米级可磁化、无本征磁矩、存在于软聚合物介质中的磁性弹性体的磁流变特性的理论模型。该研究考察了两种类型的复合材料:最初的各向同性复合材料(在没有磁场的情况下合成)和各向异性复合材料(在磁场中聚合,促进颗粒聚集成各向异性结构)。得到的数据表明,各向异性结构在合成阶段的形成导致复合材料的宏观剪切刚度大幅增加。理论结果与实验数据在定量上是一致的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Microscopic Simulation of Magnetorheological Properties in Magnetic Elastomers

Microscopic Simulation of Magnetorheological Properties in Magnetic Elastomers

Microscopic Simulation of Magnetorheological Properties in Magnetic Elastomers

This paper proposes a theoretical model for the magnetorheological properties of magnetic elastomers composed of micron-sized particles, which are magnetizable, have no intrinsic magnetic moment, and occur in a soft polymer medium. The study examines two types of composites: initially isotropic ones (synthesized in the absence of magnetic field) and anisotropic ones (polymerized in a magnetic field promoting aggregation of the particles into anisotropic structures). The data obtained show that the formation of anisotropic structures at the stage of the synthesis leads to a substantial increase in the macroscopic shear rigidity of the composite. The theoretical results are in quantitative agreement with experimental data.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Colloid Journal
Colloid Journal 化学-物理化学
CiteScore
2.20
自引率
18.20%
发文量
36
审稿时长
6-12 weeks
期刊介绍: Colloid Journal (Kolloidnyi Zhurnal) is the only journal in Russia that publishes the results of research in the area of chemical science dealing with the disperse state of matter and surface phenomena in disperse systems. The journal covers experimental and theoretical works on a great variety of colloid and surface phenomena: the structure and properties of interfaces; adsorption phenomena and structure of adsorption layers of surfactants; capillary phenomena; wetting films; wetting and spreading; and detergency. The formation of colloid systems, their molecular-kinetic and optical properties, surface forces, interaction of colloidal particles, stabilization, and criteria of stability loss of different disperse systems (lyosols and aerosols, suspensions, emulsions, foams, and micellar systems) are also topics of the journal. Colloid Journal also includes the phenomena of electro- and diffusiophoresis, electro- and thermoosmosis, and capillary and reverse osmosis, i.e., phenomena dealing with the existence of diffusion layers of molecules and ions in the vicinity of the interface.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信