{"title":"微/纳米技术方法产生的粗糙表面之间的毛细力","authors":"I. V. Uvarov, V. B. Svetovoy","doi":"10.1134/S1061933X25600484","DOIUrl":null,"url":null,"abstract":"<p>Capillary forces are one of the main sources of adhesion between the elements of microtechnological devices. This phenomenon manifests itself during the fabrication or operation of a device and plays a negative or positive role. The paper describes a method that makes it possible to estimate the capillary force between hydrophilic rough surfaces as a function of the relative humidity and the nominal contact area. The method is based on counting the number of roughness asperities, which are able to form capillary bridges spontaneously. To implement the method, detailed information about the roughness of the contacting surfaces is required, which can be obtained using an atomic force microscope (AFM). The idea of the method is illustrated, using as an example, deposited gold films of different thicknesses that come into contact with a smooth silicon surface. AFM scans of a surface with an area of 20 × 20 µm<sup>2</sup> and a resolution of 4096 pixels per line are used. The developed theory reproduces the basic patterns observed experimentally. In particular, it is shown that the relative role of capillary forces decreases with an increase in the nominal contact area, and dispersion forces begin to play a major role in adhesion. The results of the work are important for the design of microsystems and for experiments measuring dispersion forces.</p>","PeriodicalId":521,"journal":{"name":"Colloid Journal","volume":"87 4","pages":"572 - 583"},"PeriodicalIF":1.1000,"publicationDate":"2025-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Capillary Forces between Rough Surfaces Produced by the Micro/Nanotechnology Methods\",\"authors\":\"I. V. Uvarov, V. B. Svetovoy\",\"doi\":\"10.1134/S1061933X25600484\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Capillary forces are one of the main sources of adhesion between the elements of microtechnological devices. This phenomenon manifests itself during the fabrication or operation of a device and plays a negative or positive role. The paper describes a method that makes it possible to estimate the capillary force between hydrophilic rough surfaces as a function of the relative humidity and the nominal contact area. The method is based on counting the number of roughness asperities, which are able to form capillary bridges spontaneously. To implement the method, detailed information about the roughness of the contacting surfaces is required, which can be obtained using an atomic force microscope (AFM). The idea of the method is illustrated, using as an example, deposited gold films of different thicknesses that come into contact with a smooth silicon surface. AFM scans of a surface with an area of 20 × 20 µm<sup>2</sup> and a resolution of 4096 pixels per line are used. The developed theory reproduces the basic patterns observed experimentally. In particular, it is shown that the relative role of capillary forces decreases with an increase in the nominal contact area, and dispersion forces begin to play a major role in adhesion. The results of the work are important for the design of microsystems and for experiments measuring dispersion forces.</p>\",\"PeriodicalId\":521,\"journal\":{\"name\":\"Colloid Journal\",\"volume\":\"87 4\",\"pages\":\"572 - 583\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2025-08-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Colloid Journal\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S1061933X25600484\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Colloid Journal","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1134/S1061933X25600484","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Capillary Forces between Rough Surfaces Produced by the Micro/Nanotechnology Methods
Capillary forces are one of the main sources of adhesion between the elements of microtechnological devices. This phenomenon manifests itself during the fabrication or operation of a device and plays a negative or positive role. The paper describes a method that makes it possible to estimate the capillary force between hydrophilic rough surfaces as a function of the relative humidity and the nominal contact area. The method is based on counting the number of roughness asperities, which are able to form capillary bridges spontaneously. To implement the method, detailed information about the roughness of the contacting surfaces is required, which can be obtained using an atomic force microscope (AFM). The idea of the method is illustrated, using as an example, deposited gold films of different thicknesses that come into contact with a smooth silicon surface. AFM scans of a surface with an area of 20 × 20 µm2 and a resolution of 4096 pixels per line are used. The developed theory reproduces the basic patterns observed experimentally. In particular, it is shown that the relative role of capillary forces decreases with an increase in the nominal contact area, and dispersion forces begin to play a major role in adhesion. The results of the work are important for the design of microsystems and for experiments measuring dispersion forces.
期刊介绍:
Colloid Journal (Kolloidnyi Zhurnal) is the only journal in Russia that publishes the results of research in the area of chemical science dealing with the disperse state of matter and surface phenomena in disperse systems. The journal covers experimental and theoretical works on a great variety of colloid and surface phenomena: the structure and properties of interfaces; adsorption phenomena and structure of adsorption layers of surfactants; capillary phenomena; wetting films; wetting and spreading; and detergency. The formation of colloid systems, their molecular-kinetic and optical properties, surface forces, interaction of colloidal particles, stabilization, and criteria of stability loss of different disperse systems (lyosols and aerosols, suspensions, emulsions, foams, and micellar systems) are also topics of the journal. Colloid Journal also includes the phenomena of electro- and diffusiophoresis, electro- and thermoosmosis, and capillary and reverse osmosis, i.e., phenomena dealing with the existence of diffusion layers of molecules and ions in the vicinity of the interface.