EnergyFormer:用于高光谱图像分类的傅里叶嵌入能量关注

IF 4.4
Saad Sohail;Muhammad Usama;Usman Ghous;Manuel Mazzara;Salvatore Distefano;Muhammad Ahmad
{"title":"EnergyFormer:用于高光谱图像分类的傅里叶嵌入能量关注","authors":"Saad Sohail;Muhammad Usama;Usman Ghous;Manuel Mazzara;Salvatore Distefano;Muhammad Ahmad","doi":"10.1109/LGRS.2025.3596629","DOIUrl":null,"url":null,"abstract":"Hyperspectral images (HSIs) capture detailed spectral–spatial information across hundreds of contiguous bands, enabling precise material identification in domains such as environmental monitoring, agriculture, and urban analysis. However, the high dimensionality and spectral variability inherent to HSIs present significant challenges for effective feature extraction and classification. This letter introduces EnergyFormer (EF), a transformer-based framework designed to overcome these limitations through three key innovations: 1) multihead energy attention (MHEA), which formulates an energy optimization mechanism to selectively enhance discriminative spectral–spatial features; 2) Fourier positional embedding (FoPE), which adaptively models long-range spectral and spatial dependencies; and 3) enhanced convolutional block attention module (ECBAM), which emphasizes informative wavelength bands and spatial structures for robust representation learning. Extensive experiments on the WHU-Hi-HanChuan, Salinas, and Pavia University datasets demonstrate that EF achieves superior classification performance with overall accuracies of 99.28%, 98.63%, and 98.72%, respectively, outperforming leading CNN-, transformer-, and Mamba-based models.","PeriodicalId":91017,"journal":{"name":"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society","volume":"22 ","pages":"1-5"},"PeriodicalIF":4.4000,"publicationDate":"2025-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"EnergyFormer: Energy Attention With Fourier Embedding for Hyperspectral Image Classification\",\"authors\":\"Saad Sohail;Muhammad Usama;Usman Ghous;Manuel Mazzara;Salvatore Distefano;Muhammad Ahmad\",\"doi\":\"10.1109/LGRS.2025.3596629\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Hyperspectral images (HSIs) capture detailed spectral–spatial information across hundreds of contiguous bands, enabling precise material identification in domains such as environmental monitoring, agriculture, and urban analysis. However, the high dimensionality and spectral variability inherent to HSIs present significant challenges for effective feature extraction and classification. This letter introduces EnergyFormer (EF), a transformer-based framework designed to overcome these limitations through three key innovations: 1) multihead energy attention (MHEA), which formulates an energy optimization mechanism to selectively enhance discriminative spectral–spatial features; 2) Fourier positional embedding (FoPE), which adaptively models long-range spectral and spatial dependencies; and 3) enhanced convolutional block attention module (ECBAM), which emphasizes informative wavelength bands and spatial structures for robust representation learning. Extensive experiments on the WHU-Hi-HanChuan, Salinas, and Pavia University datasets demonstrate that EF achieves superior classification performance with overall accuracies of 99.28%, 98.63%, and 98.72%, respectively, outperforming leading CNN-, transformer-, and Mamba-based models.\",\"PeriodicalId\":91017,\"journal\":{\"name\":\"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society\",\"volume\":\"22 \",\"pages\":\"1-5\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2025-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11119702/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11119702/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

高光谱图像(hsi)捕获数百个连续波段的详细光谱空间信息,从而在环境监测、农业和城市分析等领域实现精确的材料识别。然而,hsi固有的高维性和光谱变异性对有效的特征提取和分类提出了重大挑战。这封信介绍了EnergyFormer (EF),这是一个基于变压器的框架,旨在通过三个关键创新来克服这些限制:1)多头能量关注(MHEA),它制定了一种能量优化机制,可以选择性地增强鉴别光谱空间特征;2)傅立叶位置嵌入(FoPE),自适应建模远程频谱和空间依赖性;3)增强的卷积块注意模块(ECBAM),强调信息波段和空间结构,用于鲁棒表示学习。在WHU-Hi-HanChuan, Salinas和Pavia University数据集上的大量实验表明,EF的分类性能优越,总体准确率分别为99.28%,98.63%和98.72%,优于领先的基于CNN, transformer和mamba的模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
EnergyFormer: Energy Attention With Fourier Embedding for Hyperspectral Image Classification
Hyperspectral images (HSIs) capture detailed spectral–spatial information across hundreds of contiguous bands, enabling precise material identification in domains such as environmental monitoring, agriculture, and urban analysis. However, the high dimensionality and spectral variability inherent to HSIs present significant challenges for effective feature extraction and classification. This letter introduces EnergyFormer (EF), a transformer-based framework designed to overcome these limitations through three key innovations: 1) multihead energy attention (MHEA), which formulates an energy optimization mechanism to selectively enhance discriminative spectral–spatial features; 2) Fourier positional embedding (FoPE), which adaptively models long-range spectral and spatial dependencies; and 3) enhanced convolutional block attention module (ECBAM), which emphasizes informative wavelength bands and spatial structures for robust representation learning. Extensive experiments on the WHU-Hi-HanChuan, Salinas, and Pavia University datasets demonstrate that EF achieves superior classification performance with overall accuracies of 99.28%, 98.63%, and 98.72%, respectively, outperforming leading CNN-, transformer-, and Mamba-based models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信