基于多相似度和注意力引导的少镜头分割

Ehtesham Iqbal;Sirojbek Safarov;Seongdeok Bang;Sajid Javed;Yahya Zweiri;Yusra Abdulrahman
{"title":"基于多相似度和注意力引导的少镜头分割","authors":"Ehtesham Iqbal;Sirojbek Safarov;Seongdeok Bang;Sajid Javed;Yahya Zweiri;Yusra Abdulrahman","doi":"10.1109/OJCS.2025.3592291","DOIUrl":null,"url":null,"abstract":"Few-shot segmentation (FSS) methods aim to segment objects of novel classes with relatively few annotated samples. Prototype learning, a popular approach in FSS, employs prototype vectors to transfer information from known classes (support images) to novel classes(query images) for segmentation. However, using only prototype vectors may not be sufficient to represent all features of the support image. To extract abundant features and make more precise predictions, we propose a <bold>M</b>ulti-<bold>S</b>imilarity and <bold>A</b>ttention <bold>N</b>etwork (MSANet) including two novel modules, a multi-similarity module and an attention module. The multi-similarity module exploits multiple feature-map of support images and query images to estimate accurate semantic relationships. The attention module instructs the MSANet to concentrate on class-relevant information. We evaluated the proposed network on standard FSS datasets, PASCAL-<inline-formula><tex-math>$5^{i}$</tex-math></inline-formula> 1-shot, PASCAL-<inline-formula><tex-math>$5^{i}$</tex-math></inline-formula> 5-shot, COCO-<inline-formula><tex-math>$20^{i}$</tex-math></inline-formula> 1-shot, and COCO-<inline-formula><tex-math>$20^{i}$</tex-math></inline-formula> 5-shot. An MSANet model with a ResNet101 backbone achieved state-of-the-art performance for all four benchmark datasets with mean intersection over union (mIoU) values of 69.13%, 73.99%, 51.09%, and 56.80%, respectively. The code used is available at <uri>https://github.com/AIVResearch/MSANet</uri>.","PeriodicalId":13205,"journal":{"name":"IEEE Open Journal of the Computer Society","volume":"6 ","pages":"1271-1282"},"PeriodicalIF":0.0000,"publicationDate":"2025-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11095423","citationCount":"0","resultStr":"{\"title\":\"Few-Shot Segmentation Using Multi-Similarity and Attention Guidance\",\"authors\":\"Ehtesham Iqbal;Sirojbek Safarov;Seongdeok Bang;Sajid Javed;Yahya Zweiri;Yusra Abdulrahman\",\"doi\":\"10.1109/OJCS.2025.3592291\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Few-shot segmentation (FSS) methods aim to segment objects of novel classes with relatively few annotated samples. Prototype learning, a popular approach in FSS, employs prototype vectors to transfer information from known classes (support images) to novel classes(query images) for segmentation. However, using only prototype vectors may not be sufficient to represent all features of the support image. To extract abundant features and make more precise predictions, we propose a <bold>M</b>ulti-<bold>S</b>imilarity and <bold>A</b>ttention <bold>N</b>etwork (MSANet) including two novel modules, a multi-similarity module and an attention module. The multi-similarity module exploits multiple feature-map of support images and query images to estimate accurate semantic relationships. The attention module instructs the MSANet to concentrate on class-relevant information. We evaluated the proposed network on standard FSS datasets, PASCAL-<inline-formula><tex-math>$5^{i}$</tex-math></inline-formula> 1-shot, PASCAL-<inline-formula><tex-math>$5^{i}$</tex-math></inline-formula> 5-shot, COCO-<inline-formula><tex-math>$20^{i}$</tex-math></inline-formula> 1-shot, and COCO-<inline-formula><tex-math>$20^{i}$</tex-math></inline-formula> 5-shot. An MSANet model with a ResNet101 backbone achieved state-of-the-art performance for all four benchmark datasets with mean intersection over union (mIoU) values of 69.13%, 73.99%, 51.09%, and 56.80%, respectively. The code used is available at <uri>https://github.com/AIVResearch/MSANet</uri>.\",\"PeriodicalId\":13205,\"journal\":{\"name\":\"IEEE Open Journal of the Computer Society\",\"volume\":\"6 \",\"pages\":\"1271-1282\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11095423\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Open Journal of the Computer Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11095423/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of the Computer Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11095423/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

少镜头分割(few -shot segmentation, FSS)方法的目的是用相对较少的注释样本来分割新类别的对象。原型学习是FSS中的一种流行方法,它利用原型向量将信息从已知类(支持图像)转移到新类(查询图像)进行分割。然而,仅使用原型向量可能不足以表示支持图像的所有特征。为了提取丰富的特征并进行更精确的预测,我们提出了一个包含两个新颖模块的多相似度和注意力网络(MSANet),即多相似度模块和注意力模块。多相似度模块利用支持图像和查询图像的多个特征映射来估计准确的语义关系。注意力模块指示MSANet专注于与类相关的信息。我们在标准FSS数据集PASCAL-$5^{i}$ 1-shot、PASCAL-$5^{i}$ 5-shot、COCO-$20^{i}$ 1-shot和COCO-$20^{i}$ 5-shot上评估了所提出的网络。具有ResNet101主干的MSANet模型在所有四个基准数据集上取得了最先进的性能,平均交联(mIoU)值分别为69.13%,73.99%,51.09%和56.80%。所使用的代码可在https://github.com/AIVResearch/MSANet上获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Few-Shot Segmentation Using Multi-Similarity and Attention Guidance
Few-shot segmentation (FSS) methods aim to segment objects of novel classes with relatively few annotated samples. Prototype learning, a popular approach in FSS, employs prototype vectors to transfer information from known classes (support images) to novel classes(query images) for segmentation. However, using only prototype vectors may not be sufficient to represent all features of the support image. To extract abundant features and make more precise predictions, we propose a Multi-Similarity and Attention Network (MSANet) including two novel modules, a multi-similarity module and an attention module. The multi-similarity module exploits multiple feature-map of support images and query images to estimate accurate semantic relationships. The attention module instructs the MSANet to concentrate on class-relevant information. We evaluated the proposed network on standard FSS datasets, PASCAL-$5^{i}$ 1-shot, PASCAL-$5^{i}$ 5-shot, COCO-$20^{i}$ 1-shot, and COCO-$20^{i}$ 5-shot. An MSANet model with a ResNet101 backbone achieved state-of-the-art performance for all four benchmark datasets with mean intersection over union (mIoU) values of 69.13%, 73.99%, 51.09%, and 56.80%, respectively. The code used is available at https://github.com/AIVResearch/MSANet.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
12.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信