Meng Wang , Haobo Chen , Lijuan Mao , Weiwei Jiao , Hong Han , Qi Zhang
{"title":"C5-net:用于淋巴结分割分类双任务迁移学习的跨器官跨模态cwin -transformer耦合卷积网络","authors":"Meng Wang , Haobo Chen , Lijuan Mao , Weiwei Jiao , Hong Han , Qi Zhang","doi":"10.1016/j.compmedimag.2025.102633","DOIUrl":null,"url":null,"abstract":"<div><div>Deep learning has made notable strides in the ultrasonic diagnosis of lymph nodes, yet it faces three primary challenges: a limited number of lymph node images and a scarcity of annotated data; difficulty in comprehensively learning both local and global semantic information; and obstacles in collaborative learning for both image segmentation and classification to achieve accurate diagnosis. To address these issues, we propose the Cross-organ Cross-modality Cswin-transformer Coupled Convolutional Network (C<sup>5</sup>-Net). First, we design a cross-organ and cross-modality transfer learning strategy to leverage skin lesion dermoscopic images, which have abundant annotations and share similarities in fields of view and morphology with the lymph node ultrasound images. Second, we couple Transformer and convolutional network to comprehensively learn both local details and global information. Third, the encoder weights in the C<sup>5</sup>-Net are shared between segmentation and classification tasks to exploit the synergistic knowledge, enhancing overall performance in ultrasound lymph node diagnosis. Our study leverages 690 lymph node ultrasound images and 1000 skin lesion dermoscopic images. Experimental results show that our C<sup>5</sup>-Net achieves the best segmentation and classification performance for lymph nodes among advanced methods, with the Dice coefficient of segmentation equaling 0.854, and the accuracy of classification equaling 0.874. Our method has consistently shown accuracy and robustness in the segmentation and classification of lymph nodes, contributing to the early and accurate detection of lymph nodal malignancy, which is potentially essential for effective treatment planning in clinical oncology.</div></div>","PeriodicalId":50631,"journal":{"name":"Computerized Medical Imaging and Graphics","volume":"124 ","pages":"Article 102633"},"PeriodicalIF":4.9000,"publicationDate":"2025-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"C5-net: Cross-organ cross-modality cswin-transformer coupled convolutional network for dual task transfer learning in lymph node segmentation and classification\",\"authors\":\"Meng Wang , Haobo Chen , Lijuan Mao , Weiwei Jiao , Hong Han , Qi Zhang\",\"doi\":\"10.1016/j.compmedimag.2025.102633\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Deep learning has made notable strides in the ultrasonic diagnosis of lymph nodes, yet it faces three primary challenges: a limited number of lymph node images and a scarcity of annotated data; difficulty in comprehensively learning both local and global semantic information; and obstacles in collaborative learning for both image segmentation and classification to achieve accurate diagnosis. To address these issues, we propose the Cross-organ Cross-modality Cswin-transformer Coupled Convolutional Network (C<sup>5</sup>-Net). First, we design a cross-organ and cross-modality transfer learning strategy to leverage skin lesion dermoscopic images, which have abundant annotations and share similarities in fields of view and morphology with the lymph node ultrasound images. Second, we couple Transformer and convolutional network to comprehensively learn both local details and global information. Third, the encoder weights in the C<sup>5</sup>-Net are shared between segmentation and classification tasks to exploit the synergistic knowledge, enhancing overall performance in ultrasound lymph node diagnosis. Our study leverages 690 lymph node ultrasound images and 1000 skin lesion dermoscopic images. Experimental results show that our C<sup>5</sup>-Net achieves the best segmentation and classification performance for lymph nodes among advanced methods, with the Dice coefficient of segmentation equaling 0.854, and the accuracy of classification equaling 0.874. Our method has consistently shown accuracy and robustness in the segmentation and classification of lymph nodes, contributing to the early and accurate detection of lymph nodal malignancy, which is potentially essential for effective treatment planning in clinical oncology.</div></div>\",\"PeriodicalId\":50631,\"journal\":{\"name\":\"Computerized Medical Imaging and Graphics\",\"volume\":\"124 \",\"pages\":\"Article 102633\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2025-08-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computerized Medical Imaging and Graphics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0895611125001429\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computerized Medical Imaging and Graphics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0895611125001429","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
C5-net: Cross-organ cross-modality cswin-transformer coupled convolutional network for dual task transfer learning in lymph node segmentation and classification
Deep learning has made notable strides in the ultrasonic diagnosis of lymph nodes, yet it faces three primary challenges: a limited number of lymph node images and a scarcity of annotated data; difficulty in comprehensively learning both local and global semantic information; and obstacles in collaborative learning for both image segmentation and classification to achieve accurate diagnosis. To address these issues, we propose the Cross-organ Cross-modality Cswin-transformer Coupled Convolutional Network (C5-Net). First, we design a cross-organ and cross-modality transfer learning strategy to leverage skin lesion dermoscopic images, which have abundant annotations and share similarities in fields of view and morphology with the lymph node ultrasound images. Second, we couple Transformer and convolutional network to comprehensively learn both local details and global information. Third, the encoder weights in the C5-Net are shared between segmentation and classification tasks to exploit the synergistic knowledge, enhancing overall performance in ultrasound lymph node diagnosis. Our study leverages 690 lymph node ultrasound images and 1000 skin lesion dermoscopic images. Experimental results show that our C5-Net achieves the best segmentation and classification performance for lymph nodes among advanced methods, with the Dice coefficient of segmentation equaling 0.854, and the accuracy of classification equaling 0.874. Our method has consistently shown accuracy and robustness in the segmentation and classification of lymph nodes, contributing to the early and accurate detection of lymph nodal malignancy, which is potentially essential for effective treatment planning in clinical oncology.
期刊介绍:
The purpose of the journal Computerized Medical Imaging and Graphics is to act as a source for the exchange of research results concerning algorithmic advances, development, and application of digital imaging in disease detection, diagnosis, intervention, prevention, precision medicine, and population health. Included in the journal will be articles on novel computerized imaging or visualization techniques, including artificial intelligence and machine learning, augmented reality for surgical planning and guidance, big biomedical data visualization, computer-aided diagnosis, computerized-robotic surgery, image-guided therapy, imaging scanning and reconstruction, mobile and tele-imaging, radiomics, and imaging integration and modeling with other information relevant to digital health. The types of biomedical imaging include: magnetic resonance, computed tomography, ultrasound, nuclear medicine, X-ray, microwave, optical and multi-photon microscopy, video and sensory imaging, and the convergence of biomedical images with other non-imaging datasets.