{"title":"具有双分量Allee效应的随机单物种模型的阈值动力学","authors":"Guijie Lan","doi":"10.1016/j.chaos.2025.116952","DOIUrl":null,"url":null,"abstract":"<div><div>This paper establishes a stochastic population model incorporating two component Allee effects. For the deterministic model, we rigorously prove the existence and stability of equilibria. For the stochastic model, we derive the stochastic net reproductive rate <span><math><msubsup><mrow><mi>R</mi></mrow><mrow><mn>0</mn></mrow><mrow><mi>s</mi></mrow></msubsup></math></span>, serving as a sharp threshold, that is, if <span><math><mrow><msubsup><mrow><mi>R</mi></mrow><mrow><mn>0</mn></mrow><mrow><mi>s</mi></mrow></msubsup><mo><</mo><mn>1</mn></mrow></math></span>, the population is extinct almost surely, while <span><math><mrow><msubsup><mrow><mi>R</mi></mrow><mrow><mn>0</mn></mrow><mrow><mi>s</mi></mrow></msubsup><mo>></mo><mn>1</mn></mrow></math></span> results in the population being strongly stochastically permanent.</div></div>","PeriodicalId":9764,"journal":{"name":"Chaos Solitons & Fractals","volume":"200 ","pages":"Article 116952"},"PeriodicalIF":5.6000,"publicationDate":"2025-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Threshold dynamics of a stochastic single species model with two component Allee effects\",\"authors\":\"Guijie Lan\",\"doi\":\"10.1016/j.chaos.2025.116952\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper establishes a stochastic population model incorporating two component Allee effects. For the deterministic model, we rigorously prove the existence and stability of equilibria. For the stochastic model, we derive the stochastic net reproductive rate <span><math><msubsup><mrow><mi>R</mi></mrow><mrow><mn>0</mn></mrow><mrow><mi>s</mi></mrow></msubsup></math></span>, serving as a sharp threshold, that is, if <span><math><mrow><msubsup><mrow><mi>R</mi></mrow><mrow><mn>0</mn></mrow><mrow><mi>s</mi></mrow></msubsup><mo><</mo><mn>1</mn></mrow></math></span>, the population is extinct almost surely, while <span><math><mrow><msubsup><mrow><mi>R</mi></mrow><mrow><mn>0</mn></mrow><mrow><mi>s</mi></mrow></msubsup><mo>></mo><mn>1</mn></mrow></math></span> results in the population being strongly stochastically permanent.</div></div>\",\"PeriodicalId\":9764,\"journal\":{\"name\":\"Chaos Solitons & Fractals\",\"volume\":\"200 \",\"pages\":\"Article 116952\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2025-08-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chaos Solitons & Fractals\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0960077925009658\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos Solitons & Fractals","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960077925009658","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Threshold dynamics of a stochastic single species model with two component Allee effects
This paper establishes a stochastic population model incorporating two component Allee effects. For the deterministic model, we rigorously prove the existence and stability of equilibria. For the stochastic model, we derive the stochastic net reproductive rate , serving as a sharp threshold, that is, if , the population is extinct almost surely, while results in the population being strongly stochastically permanent.
期刊介绍:
Chaos, Solitons & Fractals strives to establish itself as a premier journal in the interdisciplinary realm of Nonlinear Science, Non-equilibrium, and Complex Phenomena. It welcomes submissions covering a broad spectrum of topics within this field, including dynamics, non-equilibrium processes in physics, chemistry, and geophysics, complex matter and networks, mathematical models, computational biology, applications to quantum and mesoscopic phenomena, fluctuations and random processes, self-organization, and social phenomena.