具有双分量Allee效应的随机单物种模型的阈值动力学

IF 5.6 1区 数学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Guijie Lan
{"title":"具有双分量Allee效应的随机单物种模型的阈值动力学","authors":"Guijie Lan","doi":"10.1016/j.chaos.2025.116952","DOIUrl":null,"url":null,"abstract":"<div><div>This paper establishes a stochastic population model incorporating two component Allee effects. For the deterministic model, we rigorously prove the existence and stability of equilibria. For the stochastic model, we derive the stochastic net reproductive rate <span><math><msubsup><mrow><mi>R</mi></mrow><mrow><mn>0</mn></mrow><mrow><mi>s</mi></mrow></msubsup></math></span>, serving as a sharp threshold, that is, if <span><math><mrow><msubsup><mrow><mi>R</mi></mrow><mrow><mn>0</mn></mrow><mrow><mi>s</mi></mrow></msubsup><mo>&lt;</mo><mn>1</mn></mrow></math></span>, the population is extinct almost surely, while <span><math><mrow><msubsup><mrow><mi>R</mi></mrow><mrow><mn>0</mn></mrow><mrow><mi>s</mi></mrow></msubsup><mo>&gt;</mo><mn>1</mn></mrow></math></span> results in the population being strongly stochastically permanent.</div></div>","PeriodicalId":9764,"journal":{"name":"Chaos Solitons & Fractals","volume":"200 ","pages":"Article 116952"},"PeriodicalIF":5.6000,"publicationDate":"2025-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Threshold dynamics of a stochastic single species model with two component Allee effects\",\"authors\":\"Guijie Lan\",\"doi\":\"10.1016/j.chaos.2025.116952\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper establishes a stochastic population model incorporating two component Allee effects. For the deterministic model, we rigorously prove the existence and stability of equilibria. For the stochastic model, we derive the stochastic net reproductive rate <span><math><msubsup><mrow><mi>R</mi></mrow><mrow><mn>0</mn></mrow><mrow><mi>s</mi></mrow></msubsup></math></span>, serving as a sharp threshold, that is, if <span><math><mrow><msubsup><mrow><mi>R</mi></mrow><mrow><mn>0</mn></mrow><mrow><mi>s</mi></mrow></msubsup><mo>&lt;</mo><mn>1</mn></mrow></math></span>, the population is extinct almost surely, while <span><math><mrow><msubsup><mrow><mi>R</mi></mrow><mrow><mn>0</mn></mrow><mrow><mi>s</mi></mrow></msubsup><mo>&gt;</mo><mn>1</mn></mrow></math></span> results in the population being strongly stochastically permanent.</div></div>\",\"PeriodicalId\":9764,\"journal\":{\"name\":\"Chaos Solitons & Fractals\",\"volume\":\"200 \",\"pages\":\"Article 116952\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2025-08-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chaos Solitons & Fractals\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0960077925009658\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos Solitons & Fractals","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960077925009658","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

本文建立了一个包含双分量Allee效应的随机种群模型。对于确定性模型,我们严格地证明了平衡点的存在性和稳定性。对于随机模型,我们推导出随机净繁殖率R0s,作为一个尖锐的阈值,即当R0s>;1时,种群几乎肯定灭绝,而R0s>;1则导致种群强随机永久。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Threshold dynamics of a stochastic single species model with two component Allee effects
This paper establishes a stochastic population model incorporating two component Allee effects. For the deterministic model, we rigorously prove the existence and stability of equilibria. For the stochastic model, we derive the stochastic net reproductive rate R0s, serving as a sharp threshold, that is, if R0s<1, the population is extinct almost surely, while R0s>1 results in the population being strongly stochastically permanent.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chaos Solitons & Fractals
Chaos Solitons & Fractals 物理-数学跨学科应用
CiteScore
13.20
自引率
10.30%
发文量
1087
审稿时长
9 months
期刊介绍: Chaos, Solitons & Fractals strives to establish itself as a premier journal in the interdisciplinary realm of Nonlinear Science, Non-equilibrium, and Complex Phenomena. It welcomes submissions covering a broad spectrum of topics within this field, including dynamics, non-equilibrium processes in physics, chemistry, and geophysics, complex matter and networks, mathematical models, computational biology, applications to quantum and mesoscopic phenomena, fluctuations and random processes, self-organization, and social phenomena.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信