Natalia Markovich , Maksim Ryzhov , Marijus Vaičiulis
{"title":"随机图的推理由聚类附件演化而来","authors":"Natalia Markovich , Maksim Ryzhov , Marijus Vaičiulis","doi":"10.1016/j.jspi.2025.106332","DOIUrl":null,"url":null,"abstract":"<div><div>The evolution of random undirected graphs by the clustering attachment (CA) both without node and edge deletion and with uniform node or edge deletion is investigated. Theoretical results are obtained for the CA without node and edge deletion when a newly appended node is connected to two existing nodes of the graph at each evolution step. Theoretical results are the following: (1) the sequence of increments of the consecutive mean clustering coefficients tends to zero; (2) the sequences of node degrees and triangle counts of any fixed node are proved to be submartingales. These results were obtained for any initial graph. The simulation study is provided for the CA with uniform node or edge deletion and without any deletion. It is shown that (1) the CA leads to light-tailed distributed node degrees and triangle counts; (2) the average clustering coefficient tends to a constant over time; (3) the mean node degree and the mean triangle count increase over time with the rate depending on the parameters of the CA. The exposition is accompanied by a real data study.</div></div>","PeriodicalId":50039,"journal":{"name":"Journal of Statistical Planning and Inference","volume":"241 ","pages":"Article 106332"},"PeriodicalIF":0.8000,"publicationDate":"2025-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Inferences for random graphs evolved by clustering attachment\",\"authors\":\"Natalia Markovich , Maksim Ryzhov , Marijus Vaičiulis\",\"doi\":\"10.1016/j.jspi.2025.106332\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The evolution of random undirected graphs by the clustering attachment (CA) both without node and edge deletion and with uniform node or edge deletion is investigated. Theoretical results are obtained for the CA without node and edge deletion when a newly appended node is connected to two existing nodes of the graph at each evolution step. Theoretical results are the following: (1) the sequence of increments of the consecutive mean clustering coefficients tends to zero; (2) the sequences of node degrees and triangle counts of any fixed node are proved to be submartingales. These results were obtained for any initial graph. The simulation study is provided for the CA with uniform node or edge deletion and without any deletion. It is shown that (1) the CA leads to light-tailed distributed node degrees and triangle counts; (2) the average clustering coefficient tends to a constant over time; (3) the mean node degree and the mean triangle count increase over time with the rate depending on the parameters of the CA. The exposition is accompanied by a real data study.</div></div>\",\"PeriodicalId\":50039,\"journal\":{\"name\":\"Journal of Statistical Planning and Inference\",\"volume\":\"241 \",\"pages\":\"Article 106332\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2025-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Statistical Planning and Inference\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0378375825000709\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Statistical Planning and Inference","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378375825000709","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
Inferences for random graphs evolved by clustering attachment
The evolution of random undirected graphs by the clustering attachment (CA) both without node and edge deletion and with uniform node or edge deletion is investigated. Theoretical results are obtained for the CA without node and edge deletion when a newly appended node is connected to two existing nodes of the graph at each evolution step. Theoretical results are the following: (1) the sequence of increments of the consecutive mean clustering coefficients tends to zero; (2) the sequences of node degrees and triangle counts of any fixed node are proved to be submartingales. These results were obtained for any initial graph. The simulation study is provided for the CA with uniform node or edge deletion and without any deletion. It is shown that (1) the CA leads to light-tailed distributed node degrees and triangle counts; (2) the average clustering coefficient tends to a constant over time; (3) the mean node degree and the mean triangle count increase over time with the rate depending on the parameters of the CA. The exposition is accompanied by a real data study.
期刊介绍:
The Journal of Statistical Planning and Inference offers itself as a multifaceted and all-inclusive bridge between classical aspects of statistics and probability, and the emerging interdisciplinary aspects that have a potential of revolutionizing the subject. While we maintain our traditional strength in statistical inference, design, classical probability, and large sample methods, we also have a far more inclusive and broadened scope to keep up with the new problems that confront us as statisticians, mathematicians, and scientists.
We publish high quality articles in all branches of statistics, probability, discrete mathematics, machine learning, and bioinformatics. We also especially welcome well written and up to date review articles on fundamental themes of statistics, probability, machine learning, and general biostatistics. Thoughtful letters to the editors, interesting problems in need of a solution, and short notes carrying an element of elegance or beauty are equally welcome.