一种有效的黄斑中心检测形态学方法支持糖尿病视网膜病变的预诊断

E. de-la-Cruz-Espinosa , Rita Q. Fuentes-Aguilar , E. Morales-Vargas
{"title":"一种有效的黄斑中心检测形态学方法支持糖尿病视网膜病变的预诊断","authors":"E. de-la-Cruz-Espinosa ,&nbsp;Rita Q. Fuentes-Aguilar ,&nbsp;E. Morales-Vargas","doi":"10.1016/j.cmpbup.2025.100212","DOIUrl":null,"url":null,"abstract":"<div><div>Diabetes is a disease with a worldwide presence and a high mortality rate, causing a significant social and economic impact. One of the more adverse effects of diabetes is visual loss due to diabetic retinopathy. Current methods to identify patients who need to be seen by a specialist to prevent vision impairment include screening and optical coherence tomography examinations; however, the number of devices and ophthalmologists is insufficient to cover the diabetic population. To address this, computational methods have been developed for rapid early-damage detection. This work presents an algorithm for ocular macula identification using simple image processing techniques for a low computational cost. The proposed algorithm achieved an Euclidean distance of 8.162 <span><math><mo>±</mo></math></span> 6.774 px (1.496 <span><math><mo>±</mo></math></span> 1.190% Relative error) in a processing time of 0.458 <span><math><mo>±</mo></math></span> 0.874 s across four databases, demonstrating competitive accuracy (100%) and speed on low-resource hardware.</div></div>","PeriodicalId":72670,"journal":{"name":"Computer methods and programs in biomedicine update","volume":"8 ","pages":"Article 100212"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A morphological approach for efficient macular center detection to support pre-diagnosis of diabetic retinopathy\",\"authors\":\"E. de-la-Cruz-Espinosa ,&nbsp;Rita Q. Fuentes-Aguilar ,&nbsp;E. Morales-Vargas\",\"doi\":\"10.1016/j.cmpbup.2025.100212\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Diabetes is a disease with a worldwide presence and a high mortality rate, causing a significant social and economic impact. One of the more adverse effects of diabetes is visual loss due to diabetic retinopathy. Current methods to identify patients who need to be seen by a specialist to prevent vision impairment include screening and optical coherence tomography examinations; however, the number of devices and ophthalmologists is insufficient to cover the diabetic population. To address this, computational methods have been developed for rapid early-damage detection. This work presents an algorithm for ocular macula identification using simple image processing techniques for a low computational cost. The proposed algorithm achieved an Euclidean distance of 8.162 <span><math><mo>±</mo></math></span> 6.774 px (1.496 <span><math><mo>±</mo></math></span> 1.190% Relative error) in a processing time of 0.458 <span><math><mo>±</mo></math></span> 0.874 s across four databases, demonstrating competitive accuracy (100%) and speed on low-resource hardware.</div></div>\",\"PeriodicalId\":72670,\"journal\":{\"name\":\"Computer methods and programs in biomedicine update\",\"volume\":\"8 \",\"pages\":\"Article 100212\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer methods and programs in biomedicine update\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666990025000370\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer methods and programs in biomedicine update","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666990025000370","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

糖尿病是一种世界性的疾病,死亡率高,造成重大的社会和经济影响。糖尿病的一个更不利的影响是由糖尿病视网膜病变引起的视力丧失。目前识别需要由专家检查以预防视力损害的患者的方法包括筛查和光学相干断层扫描检查;然而,设备和眼科医生的数量不足以覆盖糖尿病人群。为了解决这个问题,已经开发了用于快速早期损伤检测的计算方法。本文提出了一种使用简单图像处理技术的低计算成本眼黄斑识别算法。该算法在4个数据库的处理时间为0.458±0.874 s,欧氏距离为8.162±6.774 px(1.496±1.190%的相对误差),在低资源硬件上具有竞争力的精度(100%)和速度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A morphological approach for efficient macular center detection to support pre-diagnosis of diabetic retinopathy
Diabetes is a disease with a worldwide presence and a high mortality rate, causing a significant social and economic impact. One of the more adverse effects of diabetes is visual loss due to diabetic retinopathy. Current methods to identify patients who need to be seen by a specialist to prevent vision impairment include screening and optical coherence tomography examinations; however, the number of devices and ophthalmologists is insufficient to cover the diabetic population. To address this, computational methods have been developed for rapid early-damage detection. This work presents an algorithm for ocular macula identification using simple image processing techniques for a low computational cost. The proposed algorithm achieved an Euclidean distance of 8.162 ± 6.774 px (1.496 ± 1.190% Relative error) in a processing time of 0.458 ± 0.874 s across four databases, demonstrating competitive accuracy (100%) and speed on low-resource hardware.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.90
自引率
0.00%
发文量
0
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信