Raúl Miñán, Javier Gallardo, Álvaro Ciudad, Alexis Molina
{"title":"通过在平移,旋转和扭转空间的测地线引导,了解蛋白质配体对接","authors":"Raúl Miñán, Javier Gallardo, Álvaro Ciudad, Alexis Molina","doi":"10.1038/s42256-025-01091-x","DOIUrl":null,"url":null,"abstract":"<p>Molecular docking plays a crucial role in structure-based drug discovery, enabling the prediction of how small molecules interact with protein targets. Traditional docking methods rely on scoring functions and search heuristics, whereas recent generative approaches, such as DiffDock, leverage deep learning for pose prediction. However, blind-diffusion-based docking often struggles with binding site localization and pose accuracy, particularly in complex protein–ligand systems. This work introduces GeoDirDock (GDD), a guided diffusion approach to molecular docking that enhances the accuracy and physical plausibility of ligand docking predictions. GDD guides the denoising process of a diffusion model along geodesic paths within multiple spaces representing translational, rotational and torsional degrees of freedom. Our method leverages expert knowledge to direct the generative modelling process, specifically targeting desired protein–ligand interaction regions. We demonstrate that GDD outperforms existing blind docking methods in terms of root mean squared distance accuracy and physicochemical pose realism. Our results indicate that incorporating domain expertise into the diffusion process leads to more biologically relevant docking predictions. Additionally, we explore the potential of GDD as a template-based modelling tool for lead optimization in drug discovery through angle transfer in maximum common substructure docking, showcasing its capability to accurately predict ligand orientations for chemically similar compounds. Future applications in real-world drug discovery campaigns will naturally continue to refine and extend the utility of prior-informed diffusion docking methods.</p>","PeriodicalId":48533,"journal":{"name":"Nature Machine Intelligence","volume":"8 1","pages":""},"PeriodicalIF":23.9000,"publicationDate":"2025-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Informed protein–ligand docking via geodesic guidance in translational, rotational and torsional spaces\",\"authors\":\"Raúl Miñán, Javier Gallardo, Álvaro Ciudad, Alexis Molina\",\"doi\":\"10.1038/s42256-025-01091-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Molecular docking plays a crucial role in structure-based drug discovery, enabling the prediction of how small molecules interact with protein targets. Traditional docking methods rely on scoring functions and search heuristics, whereas recent generative approaches, such as DiffDock, leverage deep learning for pose prediction. However, blind-diffusion-based docking often struggles with binding site localization and pose accuracy, particularly in complex protein–ligand systems. This work introduces GeoDirDock (GDD), a guided diffusion approach to molecular docking that enhances the accuracy and physical plausibility of ligand docking predictions. GDD guides the denoising process of a diffusion model along geodesic paths within multiple spaces representing translational, rotational and torsional degrees of freedom. Our method leverages expert knowledge to direct the generative modelling process, specifically targeting desired protein–ligand interaction regions. We demonstrate that GDD outperforms existing blind docking methods in terms of root mean squared distance accuracy and physicochemical pose realism. Our results indicate that incorporating domain expertise into the diffusion process leads to more biologically relevant docking predictions. Additionally, we explore the potential of GDD as a template-based modelling tool for lead optimization in drug discovery through angle transfer in maximum common substructure docking, showcasing its capability to accurately predict ligand orientations for chemically similar compounds. Future applications in real-world drug discovery campaigns will naturally continue to refine and extend the utility of prior-informed diffusion docking methods.</p>\",\"PeriodicalId\":48533,\"journal\":{\"name\":\"Nature Machine Intelligence\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":23.9000,\"publicationDate\":\"2025-08-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Machine Intelligence\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1038/s42256-025-01091-x\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Machine Intelligence","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1038/s42256-025-01091-x","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Informed protein–ligand docking via geodesic guidance in translational, rotational and torsional spaces
Molecular docking plays a crucial role in structure-based drug discovery, enabling the prediction of how small molecules interact with protein targets. Traditional docking methods rely on scoring functions and search heuristics, whereas recent generative approaches, such as DiffDock, leverage deep learning for pose prediction. However, blind-diffusion-based docking often struggles with binding site localization and pose accuracy, particularly in complex protein–ligand systems. This work introduces GeoDirDock (GDD), a guided diffusion approach to molecular docking that enhances the accuracy and physical plausibility of ligand docking predictions. GDD guides the denoising process of a diffusion model along geodesic paths within multiple spaces representing translational, rotational and torsional degrees of freedom. Our method leverages expert knowledge to direct the generative modelling process, specifically targeting desired protein–ligand interaction regions. We demonstrate that GDD outperforms existing blind docking methods in terms of root mean squared distance accuracy and physicochemical pose realism. Our results indicate that incorporating domain expertise into the diffusion process leads to more biologically relevant docking predictions. Additionally, we explore the potential of GDD as a template-based modelling tool for lead optimization in drug discovery through angle transfer in maximum common substructure docking, showcasing its capability to accurately predict ligand orientations for chemically similar compounds. Future applications in real-world drug discovery campaigns will naturally continue to refine and extend the utility of prior-informed diffusion docking methods.
期刊介绍:
Nature Machine Intelligence is a distinguished publication that presents original research and reviews on various topics in machine learning, robotics, and AI. Our focus extends beyond these fields, exploring their profound impact on other scientific disciplines, as well as societal and industrial aspects. We recognize limitless possibilities wherein machine intelligence can augment human capabilities and knowledge in domains like scientific exploration, healthcare, medical diagnostics, and the creation of safe and sustainable cities, transportation, and agriculture. Simultaneously, we acknowledge the emergence of ethical, social, and legal concerns due to the rapid pace of advancements.
To foster interdisciplinary discussions on these far-reaching implications, Nature Machine Intelligence serves as a platform for dialogue facilitated through Comments, News Features, News & Views articles, and Correspondence. Our goal is to encourage a comprehensive examination of these subjects.
Similar to all Nature-branded journals, Nature Machine Intelligence operates under the guidance of a team of skilled editors. We adhere to a fair and rigorous peer-review process, ensuring high standards of copy-editing and production, swift publication, and editorial independence.