Wei Zhou, Li Yang, Lei Zhao, Runyu Zhang, Yifan Cui, Hongpu Huang, Kun Qie, Chen Wang
{"title":"视觉技术在交通监控系统中的应用综述","authors":"Wei Zhou, Li Yang, Lei Zhao, Runyu Zhang, Yifan Cui, Hongpu Huang, Kun Qie, Chen Wang","doi":"10.1145/3760525","DOIUrl":null,"url":null,"abstract":"Traffic Surveillance Systems (TSS) have become increasingly crucial in modern intelligent transportation systems, with vision technologies playing a central role for scene perception and understanding. While existing surveys typically focus on isolated aspects of TSS, a comprehensive analytical framework bridging low-level and high-level perception tasks, particularly considering emerging technologies, remains lacking. This paper presents a systematic review of vision technologies in TSS, examining both low-level perception tasks (object detection, classification, and tracking) and high-level perception tasks (parameter estimation, anomaly detection, and behavior understanding). Specifically, we first provide a detailed methodological categorization and comprehensive performance evaluation for each task. Our investigation reveals five fundamental limitations in current TSS: perceptual data degradation in complex scenarios, data-driven learning constraints, semantic understanding gaps, sensing coverage limitations and computational resource demands. To address these challenges, we systematically analyze five categories of current approaches and potential trends: advanced perception enhancement, efficient learning paradigms, knowledge-enhanced understanding, cooperative sensing frameworks and efficient computing frameworks, critically assessing their real-world applicability. Furthermore, we evaluate the transformative potential of foundation models in TSS, which exhibit remarkable zero-shot learning abilities, strong generalization, and sophisticated reasoning capabilities across diverse tasks. This review provides a unified analytical framework bridging low-level and high-level perception tasks, systematically analyzes current limitations and solutions, and presents a structured roadmap for integrating emerging technologies, particularly foundation models, to enhance TSS capabilities.","PeriodicalId":50926,"journal":{"name":"ACM Computing Surveys","volume":"17 1","pages":""},"PeriodicalIF":28.0000,"publicationDate":"2025-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Vision Technologies with Applications in Traffic Surveillance Systems: A Holistic Survey\",\"authors\":\"Wei Zhou, Li Yang, Lei Zhao, Runyu Zhang, Yifan Cui, Hongpu Huang, Kun Qie, Chen Wang\",\"doi\":\"10.1145/3760525\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Traffic Surveillance Systems (TSS) have become increasingly crucial in modern intelligent transportation systems, with vision technologies playing a central role for scene perception and understanding. While existing surveys typically focus on isolated aspects of TSS, a comprehensive analytical framework bridging low-level and high-level perception tasks, particularly considering emerging technologies, remains lacking. This paper presents a systematic review of vision technologies in TSS, examining both low-level perception tasks (object detection, classification, and tracking) and high-level perception tasks (parameter estimation, anomaly detection, and behavior understanding). Specifically, we first provide a detailed methodological categorization and comprehensive performance evaluation for each task. Our investigation reveals five fundamental limitations in current TSS: perceptual data degradation in complex scenarios, data-driven learning constraints, semantic understanding gaps, sensing coverage limitations and computational resource demands. To address these challenges, we systematically analyze five categories of current approaches and potential trends: advanced perception enhancement, efficient learning paradigms, knowledge-enhanced understanding, cooperative sensing frameworks and efficient computing frameworks, critically assessing their real-world applicability. Furthermore, we evaluate the transformative potential of foundation models in TSS, which exhibit remarkable zero-shot learning abilities, strong generalization, and sophisticated reasoning capabilities across diverse tasks. This review provides a unified analytical framework bridging low-level and high-level perception tasks, systematically analyzes current limitations and solutions, and presents a structured roadmap for integrating emerging technologies, particularly foundation models, to enhance TSS capabilities.\",\"PeriodicalId\":50926,\"journal\":{\"name\":\"ACM Computing Surveys\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":28.0000,\"publicationDate\":\"2025-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Computing Surveys\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1145/3760525\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Computing Surveys","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3760525","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
Vision Technologies with Applications in Traffic Surveillance Systems: A Holistic Survey
Traffic Surveillance Systems (TSS) have become increasingly crucial in modern intelligent transportation systems, with vision technologies playing a central role for scene perception and understanding. While existing surveys typically focus on isolated aspects of TSS, a comprehensive analytical framework bridging low-level and high-level perception tasks, particularly considering emerging technologies, remains lacking. This paper presents a systematic review of vision technologies in TSS, examining both low-level perception tasks (object detection, classification, and tracking) and high-level perception tasks (parameter estimation, anomaly detection, and behavior understanding). Specifically, we first provide a detailed methodological categorization and comprehensive performance evaluation for each task. Our investigation reveals five fundamental limitations in current TSS: perceptual data degradation in complex scenarios, data-driven learning constraints, semantic understanding gaps, sensing coverage limitations and computational resource demands. To address these challenges, we systematically analyze five categories of current approaches and potential trends: advanced perception enhancement, efficient learning paradigms, knowledge-enhanced understanding, cooperative sensing frameworks and efficient computing frameworks, critically assessing their real-world applicability. Furthermore, we evaluate the transformative potential of foundation models in TSS, which exhibit remarkable zero-shot learning abilities, strong generalization, and sophisticated reasoning capabilities across diverse tasks. This review provides a unified analytical framework bridging low-level and high-level perception tasks, systematically analyzes current limitations and solutions, and presents a structured roadmap for integrating emerging technologies, particularly foundation models, to enhance TSS capabilities.
期刊介绍:
ACM Computing Surveys is an academic journal that focuses on publishing surveys and tutorials on various areas of computing research and practice. The journal aims to provide comprehensive and easily understandable articles that guide readers through the literature and help them understand topics outside their specialties. In terms of impact, CSUR has a high reputation with a 2022 Impact Factor of 16.6. It is ranked 3rd out of 111 journals in the field of Computer Science Theory & Methods.
ACM Computing Surveys is indexed and abstracted in various services, including AI2 Semantic Scholar, Baidu, Clarivate/ISI: JCR, CNKI, DeepDyve, DTU, EBSCO: EDS/HOST, and IET Inspec, among others.