Ran Zhang, Chengxiang Qiu, Galina Filippova, Gang Li, Jay Shendure, Jean-Philippe Vert, Xinxian Deng, William Stafford Noble, Christine Disteche
{"title":"小鼠胚胎发育过程中的多条件和多模态时间分布推断","authors":"Ran Zhang, Chengxiang Qiu, Galina Filippova, Gang Li, Jay Shendure, Jean-Philippe Vert, Xinxian Deng, William Stafford Noble, Christine Disteche","doi":"10.1101/gr.279997.124","DOIUrl":null,"url":null,"abstract":"The emergence of single-cell time-series datasets enables modeling of changes in various types of cellular profiles over time. However, due to the disruptive nature of single-cell measurements, it is impossible to capture the full temporal trajectory of a particular cell. Furthermore, single-cell profiles can be collected at mismatched time points across different conditions (e.g., sex, batch, disease) and data modalities (e.g., scRNA-seq, scATAC-seq), which makes modeling challenging. Here we propose a joint modeling framework, Sunbear, for integrating multicondition and multimodal single-cell profiles across time. Sunbear can be used to impute single-cell temporal profile changes, align multidataset and multimodal profiles across time, and extrapolate single-cell profiles in a missing modality. We applied Sunbear to reveal sex-biased transcription during mouse embryonic development and predict dynamic relationships between epigenetic priming and transcription for cells in which multimodal profiles are unavailable. Sunbear thus enables the projection of single-cell time-series snapshots to multimodal and multicondition views of cellular trajectories.","PeriodicalId":12678,"journal":{"name":"Genome research","volume":"2 1","pages":""},"PeriodicalIF":5.5000,"publicationDate":"2025-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multicondition and multimodal temporal profile inference during mouse embryonic development\",\"authors\":\"Ran Zhang, Chengxiang Qiu, Galina Filippova, Gang Li, Jay Shendure, Jean-Philippe Vert, Xinxian Deng, William Stafford Noble, Christine Disteche\",\"doi\":\"10.1101/gr.279997.124\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The emergence of single-cell time-series datasets enables modeling of changes in various types of cellular profiles over time. However, due to the disruptive nature of single-cell measurements, it is impossible to capture the full temporal trajectory of a particular cell. Furthermore, single-cell profiles can be collected at mismatched time points across different conditions (e.g., sex, batch, disease) and data modalities (e.g., scRNA-seq, scATAC-seq), which makes modeling challenging. Here we propose a joint modeling framework, Sunbear, for integrating multicondition and multimodal single-cell profiles across time. Sunbear can be used to impute single-cell temporal profile changes, align multidataset and multimodal profiles across time, and extrapolate single-cell profiles in a missing modality. We applied Sunbear to reveal sex-biased transcription during mouse embryonic development and predict dynamic relationships between epigenetic priming and transcription for cells in which multimodal profiles are unavailable. Sunbear thus enables the projection of single-cell time-series snapshots to multimodal and multicondition views of cellular trajectories.\",\"PeriodicalId\":12678,\"journal\":{\"name\":\"Genome research\",\"volume\":\"2 1\",\"pages\":\"\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2025-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Genome research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1101/gr.279997.124\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genome research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1101/gr.279997.124","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Multicondition and multimodal temporal profile inference during mouse embryonic development
The emergence of single-cell time-series datasets enables modeling of changes in various types of cellular profiles over time. However, due to the disruptive nature of single-cell measurements, it is impossible to capture the full temporal trajectory of a particular cell. Furthermore, single-cell profiles can be collected at mismatched time points across different conditions (e.g., sex, batch, disease) and data modalities (e.g., scRNA-seq, scATAC-seq), which makes modeling challenging. Here we propose a joint modeling framework, Sunbear, for integrating multicondition and multimodal single-cell profiles across time. Sunbear can be used to impute single-cell temporal profile changes, align multidataset and multimodal profiles across time, and extrapolate single-cell profiles in a missing modality. We applied Sunbear to reveal sex-biased transcription during mouse embryonic development and predict dynamic relationships between epigenetic priming and transcription for cells in which multimodal profiles are unavailable. Sunbear thus enables the projection of single-cell time-series snapshots to multimodal and multicondition views of cellular trajectories.
期刊介绍:
Launched in 1995, Genome Research is an international, continuously published, peer-reviewed journal that focuses on research that provides novel insights into the genome biology of all organisms, including advances in genomic medicine.
Among the topics considered by the journal are genome structure and function, comparative genomics, molecular evolution, genome-scale quantitative and population genetics, proteomics, epigenomics, and systems biology. The journal also features exciting gene discoveries and reports of cutting-edge computational biology and high-throughput methodologies.
New data in these areas are published as research papers, or methods and resource reports that provide novel information on technologies or tools that will be of interest to a broad readership. Complete data sets are presented electronically on the journal''s web site where appropriate. The journal also provides Reviews, Perspectives, and Insight/Outlook articles, which present commentary on the latest advances published both here and elsewhere, placing such progress in its broader biological context.