强正则化多类线性分类的一比特量化和稀疏化

IF 5.8 2区 工程技术 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Reza Ghane;Danil Akhtiamov;Babak Hassibi
{"title":"强正则化多类线性分类的一比特量化和稀疏化","authors":"Reza Ghane;Danil Akhtiamov;Babak Hassibi","doi":"10.1109/TSP.2025.3598246","DOIUrl":null,"url":null,"abstract":"We study the use of linear regression for multiclass classification in the over-parametrized regime where some of the training data is mislabeled. In such scenarios it is necessary to add an explicit regularization term, <inline-formula><tex-math>$\\lambda f(\\cdot)$</tex-math></inline-formula>, for some convex function <inline-formula><tex-math>$f(\\cdot)$</tex-math></inline-formula>, to avoid overfitting the mislabeled data. In our analysis, we assume that the data is sampled from a Gaussian Mixture Model with equal class sizes, and that a proportion of the training labels is corrupted for each class. Under these assumptions, we prove that the best classification performance is achieved when <inline-formula><tex-math>$f(\\cdot)=\\|\\cdot\\|^{2}_{2}$</tex-math></inline-formula> and <inline-formula><tex-math>$\\lambda\\to\\infty$</tex-math></inline-formula>. We then proceed to analyze the classification errors for <inline-formula><tex-math>$f(\\cdot)=\\|\\cdot\\|_{1}$</tex-math></inline-formula> and <inline-formula><tex-math>$f(\\cdot)=\\|\\cdot\\|_{\\infty}$</tex-math></inline-formula> in the large <inline-formula><tex-math>$\\lambda$</tex-math></inline-formula> regime and notice that it is often possible to find sparse and one-bit solutions, respectively, that perform almost as well as the one corresponding to <inline-formula><tex-math>$f(\\cdot)=\\|\\cdot\\|_{2}^{2}$</tex-math></inline-formula>.","PeriodicalId":13330,"journal":{"name":"IEEE Transactions on Signal Processing","volume":"73 ","pages":"3270-3285"},"PeriodicalIF":5.8000,"publicationDate":"2025-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"One-Bit Quantization and Sparsification for Multiclass Linear Classification With Strong Regularization\",\"authors\":\"Reza Ghane;Danil Akhtiamov;Babak Hassibi\",\"doi\":\"10.1109/TSP.2025.3598246\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the use of linear regression for multiclass classification in the over-parametrized regime where some of the training data is mislabeled. In such scenarios it is necessary to add an explicit regularization term, <inline-formula><tex-math>$\\\\lambda f(\\\\cdot)$</tex-math></inline-formula>, for some convex function <inline-formula><tex-math>$f(\\\\cdot)$</tex-math></inline-formula>, to avoid overfitting the mislabeled data. In our analysis, we assume that the data is sampled from a Gaussian Mixture Model with equal class sizes, and that a proportion of the training labels is corrupted for each class. Under these assumptions, we prove that the best classification performance is achieved when <inline-formula><tex-math>$f(\\\\cdot)=\\\\|\\\\cdot\\\\|^{2}_{2}$</tex-math></inline-formula> and <inline-formula><tex-math>$\\\\lambda\\\\to\\\\infty$</tex-math></inline-formula>. We then proceed to analyze the classification errors for <inline-formula><tex-math>$f(\\\\cdot)=\\\\|\\\\cdot\\\\|_{1}$</tex-math></inline-formula> and <inline-formula><tex-math>$f(\\\\cdot)=\\\\|\\\\cdot\\\\|_{\\\\infty}$</tex-math></inline-formula> in the large <inline-formula><tex-math>$\\\\lambda$</tex-math></inline-formula> regime and notice that it is often possible to find sparse and one-bit solutions, respectively, that perform almost as well as the one corresponding to <inline-formula><tex-math>$f(\\\\cdot)=\\\\|\\\\cdot\\\\|_{2}^{2}$</tex-math></inline-formula>.\",\"PeriodicalId\":13330,\"journal\":{\"name\":\"IEEE Transactions on Signal Processing\",\"volume\":\"73 \",\"pages\":\"3270-3285\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2025-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Signal Processing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11123530/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/11123530/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了在一些训练数据被错误标记的过度参数化状态下,线性回归在多类分类中的应用。在这种情况下,有必要为某些凸函数$f(\cdot)$添加显式正则化项$\lambda f(\cdot)$,以避免过度拟合错误标记的数据。在我们的分析中,我们假设数据是从具有相等类大小的高斯混合模型中采样的,并且每个类的一部分训练标签都是损坏的。在这些假设下,我们证明了当$f(\cdot)=\|\cdot\|^{2}_{2}$和$\lambda\to\infty$时分类性能最好。然后,我们继续分析$f(\cdot)=\|\cdot\|_{1}$和$f(\cdot)=\|\cdot\|_{\infty}$在大的$\lambda$体系中的分类误差,并注意到通常可以分别找到稀疏解和一位解,它们的性能几乎与$f(\cdot)=\|\cdot\|_{2}^{2}$对应的解一样好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
One-Bit Quantization and Sparsification for Multiclass Linear Classification With Strong Regularization
We study the use of linear regression for multiclass classification in the over-parametrized regime where some of the training data is mislabeled. In such scenarios it is necessary to add an explicit regularization term, $\lambda f(\cdot)$, for some convex function $f(\cdot)$, to avoid overfitting the mislabeled data. In our analysis, we assume that the data is sampled from a Gaussian Mixture Model with equal class sizes, and that a proportion of the training labels is corrupted for each class. Under these assumptions, we prove that the best classification performance is achieved when $f(\cdot)=\|\cdot\|^{2}_{2}$ and $\lambda\to\infty$. We then proceed to analyze the classification errors for $f(\cdot)=\|\cdot\|_{1}$ and $f(\cdot)=\|\cdot\|_{\infty}$ in the large $\lambda$ regime and notice that it is often possible to find sparse and one-bit solutions, respectively, that perform almost as well as the one corresponding to $f(\cdot)=\|\cdot\|_{2}^{2}$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Signal Processing
IEEE Transactions on Signal Processing 工程技术-工程:电子与电气
CiteScore
11.20
自引率
9.30%
发文量
310
审稿时长
3.0 months
期刊介绍: The IEEE Transactions on Signal Processing covers novel theory, algorithms, performance analyses and applications of techniques for the processing, understanding, learning, retrieval, mining, and extraction of information from signals. The term “signal” includes, among others, audio, video, speech, image, communication, geophysical, sonar, radar, medical and musical signals. Examples of topics of interest include, but are not limited to, information processing and the theory and application of filtering, coding, transmitting, estimating, detecting, analyzing, recognizing, synthesizing, recording, and reproducing signals.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信