基于常识线索的无监督3D物体检测。

IF 18.6
Hai Wu, Shijia Zhao, Xun Huang, Qiming Xia, Chenglu Wen, Li Jiang, Xin Li, Cheng Wang
{"title":"基于常识线索的无监督3D物体检测。","authors":"Hai Wu, Shijia Zhao, Xun Huang, Qiming Xia, Chenglu Wen, Li Jiang, Xin Li, Cheng Wang","doi":"10.1109/TPAMI.2025.3598341","DOIUrl":null,"url":null,"abstract":"<p><p>Traditional 3D object detectors, whether fully-, semi-, or weakly-supervised, rely heavily on extensive human annotations. In contrast, this paper introduces an unsupervised 3D object detector that automatically discerns object patterns without such annotations. To achieve this, we propose a Commonsense Prototype-based Detector (CPD) for unsupervised 3D object detection. CPD first constructs Commonsense Prototypes (CProto) to represent the geometric center and size of objects. It then generates high-quality pseudo-labels and guides detector convergence using size and geometry priors from CProto. Building on CPD, we further introduce CPD++, an enhanced version that improves performance by leveraging motion cues. CPD++ learns localization from stationary objects and recognition from moving objects, facilitating the mutual transfer of localization and recognition knowledge between these two object types. Both CPD and CPD++ outperform existing state-of-the-art unsupervised 3D detectors. Furthermore, when trained on Waymo Open Dataset (WOD) and tested on KITTI, CPD++ achieves 89.25% 3D Average Precision (AP) on the moderate car class at a 0.5 IoU threshold, reaching 95.3% of the performance attained by fully supervised counterparts. These results underscore the significant advancements brought by our method.</p>","PeriodicalId":94034,"journal":{"name":"IEEE transactions on pattern analysis and machine intelligence","volume":"PP ","pages":""},"PeriodicalIF":18.6000,"publicationDate":"2025-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unsupervised 3D Object Detection by Commonsense Clue.\",\"authors\":\"Hai Wu, Shijia Zhao, Xun Huang, Qiming Xia, Chenglu Wen, Li Jiang, Xin Li, Cheng Wang\",\"doi\":\"10.1109/TPAMI.2025.3598341\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Traditional 3D object detectors, whether fully-, semi-, or weakly-supervised, rely heavily on extensive human annotations. In contrast, this paper introduces an unsupervised 3D object detector that automatically discerns object patterns without such annotations. To achieve this, we propose a Commonsense Prototype-based Detector (CPD) for unsupervised 3D object detection. CPD first constructs Commonsense Prototypes (CProto) to represent the geometric center and size of objects. It then generates high-quality pseudo-labels and guides detector convergence using size and geometry priors from CProto. Building on CPD, we further introduce CPD++, an enhanced version that improves performance by leveraging motion cues. CPD++ learns localization from stationary objects and recognition from moving objects, facilitating the mutual transfer of localization and recognition knowledge between these two object types. Both CPD and CPD++ outperform existing state-of-the-art unsupervised 3D detectors. Furthermore, when trained on Waymo Open Dataset (WOD) and tested on KITTI, CPD++ achieves 89.25% 3D Average Precision (AP) on the moderate car class at a 0.5 IoU threshold, reaching 95.3% of the performance attained by fully supervised counterparts. These results underscore the significant advancements brought by our method.</p>\",\"PeriodicalId\":94034,\"journal\":{\"name\":\"IEEE transactions on pattern analysis and machine intelligence\",\"volume\":\"PP \",\"pages\":\"\"},\"PeriodicalIF\":18.6000,\"publicationDate\":\"2025-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE transactions on pattern analysis and machine intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TPAMI.2025.3598341\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on pattern analysis and machine intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TPAMI.2025.3598341","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

传统的3D对象检测器,无论是完全监督、半监督还是弱监督,都严重依赖于大量的人工注释。相比之下,本文介绍了一种无监督的3D物体检测器,它可以自动识别物体模式,而不需要这些注释。为了实现这一目标,我们提出了一种基于常识原型的检测器(CPD),用于无监督的3D物体检测。CPD首先构建常识原型(Commonsense Prototypes, CProto)来表示物体的几何中心和大小。然后,它生成高质量的伪标签,并使用CProto的大小和几何先验引导检测器收敛。在CPD的基础上,我们进一步介绍cpd++,这是一个通过利用运动线索提高性能的增强版本。cpd++从静止的物体中学习定位,从运动的物体中学习识别,促进了这两种物体类型之间定位和识别知识的相互传递。CPD和cpd++都优于现有的最先进的无监督3D探测器。此外,当在Waymo开放数据集(WOD)上进行训练并在KITTI上进行测试时,cppd++在0.5 IoU的阈值下,在中等汽车类别上达到89.25%的3D平均精度(AP),达到完全监督的同行所达到的95.3%。这些结果强调了我们的方法带来的重大进步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Unsupervised 3D Object Detection by Commonsense Clue.

Traditional 3D object detectors, whether fully-, semi-, or weakly-supervised, rely heavily on extensive human annotations. In contrast, this paper introduces an unsupervised 3D object detector that automatically discerns object patterns without such annotations. To achieve this, we propose a Commonsense Prototype-based Detector (CPD) for unsupervised 3D object detection. CPD first constructs Commonsense Prototypes (CProto) to represent the geometric center and size of objects. It then generates high-quality pseudo-labels and guides detector convergence using size and geometry priors from CProto. Building on CPD, we further introduce CPD++, an enhanced version that improves performance by leveraging motion cues. CPD++ learns localization from stationary objects and recognition from moving objects, facilitating the mutual transfer of localization and recognition knowledge between these two object types. Both CPD and CPD++ outperform existing state-of-the-art unsupervised 3D detectors. Furthermore, when trained on Waymo Open Dataset (WOD) and tested on KITTI, CPD++ achieves 89.25% 3D Average Precision (AP) on the moderate car class at a 0.5 IoU threshold, reaching 95.3% of the performance attained by fully supervised counterparts. These results underscore the significant advancements brought by our method.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信