利用多组学数据提高星形细胞基因组尺度代谢模型的预测能力。

IF 2.3
Frontiers in systems biology Pub Date : 2025-01-03 eCollection Date: 2024-01-01 DOI:10.3389/fsysb.2024.1500710
Andrea Angarita-Rodríguez, Nicolás Mendoza-Mejía, Janneth González, Jason Papin, Andrés Felipe Aristizábal, Andrés Pinzón
{"title":"利用多组学数据提高星形细胞基因组尺度代谢模型的预测能力。","authors":"Andrea Angarita-Rodríguez, Nicolás Mendoza-Mejía, Janneth González, Jason Papin, Andrés Felipe Aristizábal, Andrés Pinzón","doi":"10.3389/fsysb.2024.1500710","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>The availability of large-scale multi-omic data has revolution-ized the study of cellular machinery, enabling a systematic understanding of biological processes. However, the integration of these datasets into Genome-Scale Models of Metabolism (GEMs) re-mains underexplored. Existing methods often link transcriptome and proteome data independently to reaction boundaries, providing models with estimated maximum reaction rates based on individual datasets. This independent approach, however, introduces uncertainties and inaccuracies.</p><p><strong>Methods: </strong>To address these challenges, we applied a principal component analysis (PCA)-based approach to integrate transcriptome and proteome data. This method facilitates the reconstruction of context-specific models grounded in multi-omics data, enhancing their biological relevance and predictive capacity.</p><p><strong>Results: </strong>Using this approach, we successfully reconstructed an astrocyte GEM with improved prediction capabilities compared to state-of-the-art models available in the literature.</p><p><strong>Discussion: </strong>These advancements underscore the potential of multi-omic inte-gration to refine metabolic modeling and its critical role in studying neurodegeneration and developing effective therapies.</p>","PeriodicalId":73109,"journal":{"name":"Frontiers in systems biology","volume":"4 ","pages":"1500710"},"PeriodicalIF":2.3000,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12341997/pdf/","citationCount":"0","resultStr":"{\"title\":\"Improvement in the prediction power of an astrocyte genome-scale metabolic model using multi-omic data.\",\"authors\":\"Andrea Angarita-Rodríguez, Nicolás Mendoza-Mejía, Janneth González, Jason Papin, Andrés Felipe Aristizábal, Andrés Pinzón\",\"doi\":\"10.3389/fsysb.2024.1500710\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction: </strong>The availability of large-scale multi-omic data has revolution-ized the study of cellular machinery, enabling a systematic understanding of biological processes. However, the integration of these datasets into Genome-Scale Models of Metabolism (GEMs) re-mains underexplored. Existing methods often link transcriptome and proteome data independently to reaction boundaries, providing models with estimated maximum reaction rates based on individual datasets. This independent approach, however, introduces uncertainties and inaccuracies.</p><p><strong>Methods: </strong>To address these challenges, we applied a principal component analysis (PCA)-based approach to integrate transcriptome and proteome data. This method facilitates the reconstruction of context-specific models grounded in multi-omics data, enhancing their biological relevance and predictive capacity.</p><p><strong>Results: </strong>Using this approach, we successfully reconstructed an astrocyte GEM with improved prediction capabilities compared to state-of-the-art models available in the literature.</p><p><strong>Discussion: </strong>These advancements underscore the potential of multi-omic inte-gration to refine metabolic modeling and its critical role in studying neurodegeneration and developing effective therapies.</p>\",\"PeriodicalId\":73109,\"journal\":{\"name\":\"Frontiers in systems biology\",\"volume\":\"4 \",\"pages\":\"1500710\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-01-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12341997/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in systems biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3389/fsysb.2024.1500710\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in systems biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fsysb.2024.1500710","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

大规模多组学数据的可用性已经彻底改变了细胞机制的研究,使人们能够系统地了解生物过程。然而,将这些数据集整合到基因组尺度代谢模型(GEMs)中仍有待探索。现有的方法通常将转录组和蛋白质组数据独立地与反应边界联系起来,为模型提供基于单个数据集的估计最大反应速率。然而,这种独立的方法引入了不确定性和不准确性。方法:为了解决这些挑战,我们应用了基于主成分分析(PCA)的方法来整合转录组和蛋白质组数据。该方法促进了基于多组学数据的上下文特定模型的重建,增强了它们的生物学相关性和预测能力。结果:使用这种方法,我们成功地重建了星形胶质细胞GEM,与文献中最先进的模型相比,其预测能力有所提高。讨论:这些进展强调了多组学整合的潜力,以完善代谢模型及其在研究神经变性和开发有效治疗方面的关键作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improvement in the prediction power of an astrocyte genome-scale metabolic model using multi-omic data.

Introduction: The availability of large-scale multi-omic data has revolution-ized the study of cellular machinery, enabling a systematic understanding of biological processes. However, the integration of these datasets into Genome-Scale Models of Metabolism (GEMs) re-mains underexplored. Existing methods often link transcriptome and proteome data independently to reaction boundaries, providing models with estimated maximum reaction rates based on individual datasets. This independent approach, however, introduces uncertainties and inaccuracies.

Methods: To address these challenges, we applied a principal component analysis (PCA)-based approach to integrate transcriptome and proteome data. This method facilitates the reconstruction of context-specific models grounded in multi-omics data, enhancing their biological relevance and predictive capacity.

Results: Using this approach, we successfully reconstructed an astrocyte GEM with improved prediction capabilities compared to state-of-the-art models available in the literature.

Discussion: These advancements underscore the potential of multi-omic inte-gration to refine metabolic modeling and its critical role in studying neurodegeneration and developing effective therapies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信