使用基于模拟的推理构建虚拟患者。

IF 2.3
Frontiers in systems biology Pub Date : 2024-09-12 eCollection Date: 2024-01-01 DOI:10.3389/fsysb.2024.1444912
Nathalie Paul, Venetia Karamitsou, Clemens Giegerich, Afshin Sadeghi, Moritz Lücke, Britta Wagenhuber, Alexander Kister, Markus Rehberg
{"title":"使用基于模拟的推理构建虚拟患者。","authors":"Nathalie Paul, Venetia Karamitsou, Clemens Giegerich, Afshin Sadeghi, Moritz Lücke, Britta Wagenhuber, Alexander Kister, Markus Rehberg","doi":"10.3389/fsysb.2024.1444912","DOIUrl":null,"url":null,"abstract":"<p><p>In the context of <i>in silico</i> clinical trials, mechanistic computer models for pathophysiology and pharmacology (here Quantitative Systems Pharmacology models, QSP) can greatly support the decision making for drug candidates and elucidate the (potential) response of patients to existing and novel treatments. These models are built on disease mechanisms and then parametrized using (clinical study) data. Clinical variability among patients is represented by alternative model parameterizations, called virtual patients. Despite the complexity of disease modeling itself, using individual patient data to build these virtual patients is particularly challenging given the high-dimensional, potentially sparse and noisy clinical trial data. In this work, we investigate the applicability of simulation-based inference (SBI), an advanced probabilistic machine learning approach, for virtual patient generation from individual patient data and we develop and evaluate the concept of nearest patient fits (SBI NPF), which further enhances the fitting performance. At the example of rheumatoid arthritis where prediction of treatment response is notoriously difficult, our experiments demonstrate that the SBI approaches can capture large inter-patient variability in clinical data and can compete with standard fitting methods in the field. Moreover, since SBI learns a probability distribution over the virtual patient parametrization, it naturally provides the probability for alternative parametrizations. The learned distributions allow us to generate highly probable alternative virtual patient populations for rheumatoid arthritis, which could potentially enhance the assessment of drug candidates if used for <i>in silico</i> trials.</p>","PeriodicalId":73109,"journal":{"name":"Frontiers in systems biology","volume":"4 ","pages":"1444912"},"PeriodicalIF":2.3000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12342008/pdf/","citationCount":"0","resultStr":"{\"title\":\"Building virtual patients using simulation-based inference.\",\"authors\":\"Nathalie Paul, Venetia Karamitsou, Clemens Giegerich, Afshin Sadeghi, Moritz Lücke, Britta Wagenhuber, Alexander Kister, Markus Rehberg\",\"doi\":\"10.3389/fsysb.2024.1444912\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In the context of <i>in silico</i> clinical trials, mechanistic computer models for pathophysiology and pharmacology (here Quantitative Systems Pharmacology models, QSP) can greatly support the decision making for drug candidates and elucidate the (potential) response of patients to existing and novel treatments. These models are built on disease mechanisms and then parametrized using (clinical study) data. Clinical variability among patients is represented by alternative model parameterizations, called virtual patients. Despite the complexity of disease modeling itself, using individual patient data to build these virtual patients is particularly challenging given the high-dimensional, potentially sparse and noisy clinical trial data. In this work, we investigate the applicability of simulation-based inference (SBI), an advanced probabilistic machine learning approach, for virtual patient generation from individual patient data and we develop and evaluate the concept of nearest patient fits (SBI NPF), which further enhances the fitting performance. At the example of rheumatoid arthritis where prediction of treatment response is notoriously difficult, our experiments demonstrate that the SBI approaches can capture large inter-patient variability in clinical data and can compete with standard fitting methods in the field. Moreover, since SBI learns a probability distribution over the virtual patient parametrization, it naturally provides the probability for alternative parametrizations. The learned distributions allow us to generate highly probable alternative virtual patient populations for rheumatoid arthritis, which could potentially enhance the assessment of drug candidates if used for <i>in silico</i> trials.</p>\",\"PeriodicalId\":73109,\"journal\":{\"name\":\"Frontiers in systems biology\",\"volume\":\"4 \",\"pages\":\"1444912\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12342008/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in systems biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3389/fsysb.2024.1444912\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in systems biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fsysb.2024.1444912","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在计算机临床试验的背景下,病理生理学和药理学的机械计算机模型(定量系统药理学模型,QSP)可以极大地支持候选药物的决策,并阐明患者对现有和新型治疗的(潜在)反应。这些模型建立在疾病机制的基础上,然后使用(临床研究)数据进行参数化。患者之间的临床变异性由可选择的模型参数化表示,称为虚拟患者。尽管疾病建模本身很复杂,但考虑到高维、潜在稀疏和嘈杂的临床试验数据,使用单个患者数据来构建这些虚拟患者尤其具有挑战性。在这项工作中,我们研究了基于模拟的推理(SBI)的适用性,这是一种先进的概率机器学习方法,用于从个体患者数据中生成虚拟患者,我们开发并评估了最接近患者拟合(SBI NPF)的概念,这进一步提高了拟合性能。以类风湿关节炎为例,治疗反应的预测是出了名的困难,我们的实验表明,SBI方法可以捕获临床数据中患者之间的巨大差异,并且可以与该领域的标准拟合方法相竞争。此外,由于SBI学习了虚拟患者参数化的概率分布,因此它自然提供了可选参数化的概率。学习分布使我们能够为类风湿关节炎生成高度可能的替代虚拟患者群体,如果用于计算机试验,这可能会潜在地增强候选药物的评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Building virtual patients using simulation-based inference.

In the context of in silico clinical trials, mechanistic computer models for pathophysiology and pharmacology (here Quantitative Systems Pharmacology models, QSP) can greatly support the decision making for drug candidates and elucidate the (potential) response of patients to existing and novel treatments. These models are built on disease mechanisms and then parametrized using (clinical study) data. Clinical variability among patients is represented by alternative model parameterizations, called virtual patients. Despite the complexity of disease modeling itself, using individual patient data to build these virtual patients is particularly challenging given the high-dimensional, potentially sparse and noisy clinical trial data. In this work, we investigate the applicability of simulation-based inference (SBI), an advanced probabilistic machine learning approach, for virtual patient generation from individual patient data and we develop and evaluate the concept of nearest patient fits (SBI NPF), which further enhances the fitting performance. At the example of rheumatoid arthritis where prediction of treatment response is notoriously difficult, our experiments demonstrate that the SBI approaches can capture large inter-patient variability in clinical data and can compete with standard fitting methods in the field. Moreover, since SBI learns a probability distribution over the virtual patient parametrization, it naturally provides the probability for alternative parametrizations. The learned distributions allow us to generate highly probable alternative virtual patient populations for rheumatoid arthritis, which could potentially enhance the assessment of drug candidates if used for in silico trials.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信