人脐静脉内皮细胞(HUVECs)的药理学和毒理学研究进展。

IF 2.8 4区 医学 Q3 TOXICOLOGY
Yi Cao
{"title":"人脐静脉内皮细胞(HUVECs)的药理学和毒理学研究进展。","authors":"Yi Cao","doi":"10.1002/jat.4885","DOIUrl":null,"url":null,"abstract":"<p><p>Endothelial cells (ECs) are interior surface cells covering blood vessels, which play a crucial role in maintaining vascular homeostasis. In vascular pharmacology and toxicology, ECs directly contact drugs or toxicants entering circulation. Therefore, the bio-effects of pharmacological/toxicological substances on ECs have gained extensive research interest, which needs to be evaluated by reliable models. Human umbilical vein endothelial cells (HUVECs) have been served as versatile platforms to mimic diverse pathophysiological processes in vitro, stemming from their unique fetal arterial-like exposure microenvironment, expression of key EC markers, and comparable EC responses to various pathophysiological stimuli. This review provides an overview of the application of HUVECs in pharmacology and toxicology, with a focus on their utility and limitations. HUVECs have been widely used to model the effects of pharmacological or toxicological substances on material exchange, barrier functions, cell death, endothelial nitric oxide synthase (eNOS) uncoupling, and EC dysfunction, angiogenesis, and thrombosis. However, their applicability is constrained primarily due to vascular-type and organ-specific heterogeneity. The review highlights key mechanisms investigated using HUVECs, including oxidative stress, inflammation, organelle damage, and autophagy, metabolic reprogramming (endometabolism), and epigenetic regulation. Strategies to overcome HUVECs' limitations, such as microfluidic techniques, co-culture, and organoid models, are discussed. Finally, future directions are outlined, emphasizing the integration of HUVECs into multi-scale models, dynamic microenvironment simulations, artificial intelligence (AI)-assisted big data analysis, and patient-derived ECs for precision toxicology and personalized medicine. This review aims to guide researchers in optimizing the use of HUVECs in pharmacological and toxicological studies.</p>","PeriodicalId":15242,"journal":{"name":"Journal of Applied Toxicology","volume":" ","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Human Umbilical Vein Endothelial Cells (HUVECs) in Pharmacology and Toxicology: A Review.\",\"authors\":\"Yi Cao\",\"doi\":\"10.1002/jat.4885\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Endothelial cells (ECs) are interior surface cells covering blood vessels, which play a crucial role in maintaining vascular homeostasis. In vascular pharmacology and toxicology, ECs directly contact drugs or toxicants entering circulation. Therefore, the bio-effects of pharmacological/toxicological substances on ECs have gained extensive research interest, which needs to be evaluated by reliable models. Human umbilical vein endothelial cells (HUVECs) have been served as versatile platforms to mimic diverse pathophysiological processes in vitro, stemming from their unique fetal arterial-like exposure microenvironment, expression of key EC markers, and comparable EC responses to various pathophysiological stimuli. This review provides an overview of the application of HUVECs in pharmacology and toxicology, with a focus on their utility and limitations. HUVECs have been widely used to model the effects of pharmacological or toxicological substances on material exchange, barrier functions, cell death, endothelial nitric oxide synthase (eNOS) uncoupling, and EC dysfunction, angiogenesis, and thrombosis. However, their applicability is constrained primarily due to vascular-type and organ-specific heterogeneity. The review highlights key mechanisms investigated using HUVECs, including oxidative stress, inflammation, organelle damage, and autophagy, metabolic reprogramming (endometabolism), and epigenetic regulation. Strategies to overcome HUVECs' limitations, such as microfluidic techniques, co-culture, and organoid models, are discussed. Finally, future directions are outlined, emphasizing the integration of HUVECs into multi-scale models, dynamic microenvironment simulations, artificial intelligence (AI)-assisted big data analysis, and patient-derived ECs for precision toxicology and personalized medicine. This review aims to guide researchers in optimizing the use of HUVECs in pharmacological and toxicological studies.</p>\",\"PeriodicalId\":15242,\"journal\":{\"name\":\"Journal of Applied Toxicology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Toxicology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1002/jat.4885\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"TOXICOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Toxicology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/jat.4885","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"TOXICOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

内皮细胞(Endothelial cells, ECs)是覆盖在血管表面的细胞,在维持血管稳态中起着至关重要的作用。在血管药理学和毒理学中,血管内皮细胞直接接触进入循环的药物或毒物。因此,药理学/毒理学物质对ECs的生物效应得到了广泛的研究兴趣,这需要通过可靠的模型来评估。人脐静脉内皮细胞(HUVECs)由于其独特的胎儿动脉样暴露微环境、关键EC标志物的表达以及对各种病理生理刺激的类似EC反应,已被用作体外模拟多种病理生理过程的多功能平台。本文综述了HUVECs在药理学和毒理学方面的应用,重点介绍了它们的用途和局限性。HUVECs已被广泛用于模拟药理学或毒理学物质对物质交换、屏障功能、细胞死亡、内皮型一氧化氮合酶(eNOS)解偶联、EC功能障碍、血管生成和血栓形成的影响。然而,它们的适用性主要受到血管类型和器官特异性异质性的限制。这篇综述强调了利用HUVECs研究的关键机制,包括氧化应激、炎症、细胞器损伤、自噬、代谢重编程(子宫内膜代谢)和表观遗传调控。讨论了克服HUVECs局限性的策略,如微流体技术、共培养和类器官模型。最后,展望了HUVECs的未来发展方向,强调HUVECs与多尺度模型、动态微环境模拟、人工智能(AI)辅助大数据分析、精准毒理学和个性化医疗中患者衍生ECs的整合。本文综述旨在指导研究人员优化HUVECs在药理学和毒理学研究中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Human Umbilical Vein Endothelial Cells (HUVECs) in Pharmacology and Toxicology: A Review.

Endothelial cells (ECs) are interior surface cells covering blood vessels, which play a crucial role in maintaining vascular homeostasis. In vascular pharmacology and toxicology, ECs directly contact drugs or toxicants entering circulation. Therefore, the bio-effects of pharmacological/toxicological substances on ECs have gained extensive research interest, which needs to be evaluated by reliable models. Human umbilical vein endothelial cells (HUVECs) have been served as versatile platforms to mimic diverse pathophysiological processes in vitro, stemming from their unique fetal arterial-like exposure microenvironment, expression of key EC markers, and comparable EC responses to various pathophysiological stimuli. This review provides an overview of the application of HUVECs in pharmacology and toxicology, with a focus on their utility and limitations. HUVECs have been widely used to model the effects of pharmacological or toxicological substances on material exchange, barrier functions, cell death, endothelial nitric oxide synthase (eNOS) uncoupling, and EC dysfunction, angiogenesis, and thrombosis. However, their applicability is constrained primarily due to vascular-type and organ-specific heterogeneity. The review highlights key mechanisms investigated using HUVECs, including oxidative stress, inflammation, organelle damage, and autophagy, metabolic reprogramming (endometabolism), and epigenetic regulation. Strategies to overcome HUVECs' limitations, such as microfluidic techniques, co-culture, and organoid models, are discussed. Finally, future directions are outlined, emphasizing the integration of HUVECs into multi-scale models, dynamic microenvironment simulations, artificial intelligence (AI)-assisted big data analysis, and patient-derived ECs for precision toxicology and personalized medicine. This review aims to guide researchers in optimizing the use of HUVECs in pharmacological and toxicological studies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.00
自引率
6.10%
发文量
145
审稿时长
1 months
期刊介绍: Journal of Applied Toxicology publishes peer-reviewed original reviews and hypothesis-driven research articles on mechanistic, fundamental and applied research relating to the toxicity of drugs and chemicals at the molecular, cellular, tissue, target organ and whole body level in vivo (by all relevant routes of exposure) and in vitro / ex vivo. All aspects of toxicology are covered (including but not limited to nanotoxicology, genomics and proteomics, teratogenesis, carcinogenesis, mutagenesis, reproductive and endocrine toxicology, toxicopathology, target organ toxicity, systems toxicity (eg immunotoxicity), neurobehavioral toxicology, mechanistic studies, biochemical and molecular toxicology, novel biomarkers, pharmacokinetics/PBPK, risk assessment and environmental health studies) and emphasis is given to papers of clear application to human health, and/or advance mechanistic understanding and/or provide significant contributions and impact to their field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信