Xiao Liang, Wentao Ma, Eric Paquet, Herna Viktor, Wojtek Michalowski
{"title":"ProT-GFDM:蛋白质生成的生成分数扩散模型。","authors":"Xiao Liang, Wentao Ma, Eric Paquet, Herna Viktor, Wojtek Michalowski","doi":"10.1016/j.csbj.2025.07.045","DOIUrl":null,"url":null,"abstract":"<p><p>This work introduces the generative fractional diffusion model for protein generation (ProT-GFDM), a novel generative framework that employs fractional stochastic dynamics for protein backbone structure modeling. This approach builds on the continuous-time score-based generative diffusion modeling paradigm, where data are progressively transformed into noise via a stochastic differential equation and reversed to generate structured samples. Unlike classical methods that rely on standard Brownian motion, ProT-GFDM employs a fractional stochastic process with superdiffusive properties to improve the capture of long-range dependencies in protein structures. By integrating fractional dynamics with computationally efficient sampling, the proposed framework advances generative modeling for structured biological data, with implications for protein design and computational drug discovery.</p>","PeriodicalId":10715,"journal":{"name":"Computational and structural biotechnology journal","volume":"27 ","pages":"3464-3480"},"PeriodicalIF":4.1000,"publicationDate":"2025-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12345337/pdf/","citationCount":"0","resultStr":"{\"title\":\"ProT-GFDM: A generative fractional diffusion model for protein generation.\",\"authors\":\"Xiao Liang, Wentao Ma, Eric Paquet, Herna Viktor, Wojtek Michalowski\",\"doi\":\"10.1016/j.csbj.2025.07.045\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This work introduces the generative fractional diffusion model for protein generation (ProT-GFDM), a novel generative framework that employs fractional stochastic dynamics for protein backbone structure modeling. This approach builds on the continuous-time score-based generative diffusion modeling paradigm, where data are progressively transformed into noise via a stochastic differential equation and reversed to generate structured samples. Unlike classical methods that rely on standard Brownian motion, ProT-GFDM employs a fractional stochastic process with superdiffusive properties to improve the capture of long-range dependencies in protein structures. By integrating fractional dynamics with computationally efficient sampling, the proposed framework advances generative modeling for structured biological data, with implications for protein design and computational drug discovery.</p>\",\"PeriodicalId\":10715,\"journal\":{\"name\":\"Computational and structural biotechnology journal\",\"volume\":\"27 \",\"pages\":\"3464-3480\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2025-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12345337/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational and structural biotechnology journal\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.csbj.2025.07.045\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational and structural biotechnology journal","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.csbj.2025.07.045","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
ProT-GFDM: A generative fractional diffusion model for protein generation.
This work introduces the generative fractional diffusion model for protein generation (ProT-GFDM), a novel generative framework that employs fractional stochastic dynamics for protein backbone structure modeling. This approach builds on the continuous-time score-based generative diffusion modeling paradigm, where data are progressively transformed into noise via a stochastic differential equation and reversed to generate structured samples. Unlike classical methods that rely on standard Brownian motion, ProT-GFDM employs a fractional stochastic process with superdiffusive properties to improve the capture of long-range dependencies in protein structures. By integrating fractional dynamics with computationally efficient sampling, the proposed framework advances generative modeling for structured biological data, with implications for protein design and computational drug discovery.
期刊介绍:
Computational and Structural Biotechnology Journal (CSBJ) is an online gold open access journal publishing research articles and reviews after full peer review. All articles are published, without barriers to access, immediately upon acceptance. The journal places a strong emphasis on functional and mechanistic understanding of how molecular components in a biological process work together through the application of computational methods. Structural data may provide such insights, but they are not a pre-requisite for publication in the journal. Specific areas of interest include, but are not limited to:
Structure and function of proteins, nucleic acids and other macromolecules
Structure and function of multi-component complexes
Protein folding, processing and degradation
Enzymology
Computational and structural studies of plant systems
Microbial Informatics
Genomics
Proteomics
Metabolomics
Algorithms and Hypothesis in Bioinformatics
Mathematical and Theoretical Biology
Computational Chemistry and Drug Discovery
Microscopy and Molecular Imaging
Nanotechnology
Systems and Synthetic Biology