利用微阵列基因指纹分析机器学习鉴定成神经管细胞瘤亚群的分子靶点。

IF 4.1 2区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Computational and structural biotechnology journal Pub Date : 2025-07-24 eCollection Date: 2025-01-01 DOI:10.1016/j.csbj.2025.07.033
Alicia Reveles-Espinoza, Ulises Villela, Edgar Hernandez-Martinez, Isaac Chairez, Sergio Juárez-Méndez, J Casanova-Moreno, Ma Del Pilar Eguía-Aguilar, Luis Figueroa-Yáñez, Adriana Vallejo-Cardona, Iván Salgado
{"title":"利用微阵列基因指纹分析机器学习鉴定成神经管细胞瘤亚群的分子靶点。","authors":"Alicia Reveles-Espinoza, Ulises Villela, Edgar Hernandez-Martinez, Isaac Chairez, Sergio Juárez-Méndez, J Casanova-Moreno, Ma Del Pilar Eguía-Aguilar, Luis Figueroa-Yáñez, Adriana Vallejo-Cardona, Iván Salgado","doi":"10.1016/j.csbj.2025.07.033","DOIUrl":null,"url":null,"abstract":"<p><p>The study introduces a structured methodology for the identification of molecular targets that accurately classify medulloblastoma subgroups: WNT, SHH, Group 3 (G3) and Group 4 (G4). An artificial neural network (ANN) model trained on microarray gene expression data determined minimal gene combinations for each subgroup. The classification achieved an average accuracy of 96%, demonstrating the effectiveness of the proposed approach. Feature selection using the Kruskal-Wallis and <math> <msup><mrow><mi>χ</mi></mrow> <mrow><mn>2</mn></mrow> </msup> </math> tests revealed statistically relevant genes contributing to subgroup discrimination. Reverse transcription followed by digital Polymerase Chain Reaction (dPCR) measured the expression levels of a subset of these genes in tumor samples, validating the computational predictions with experimental evidence. The integration of machine learning and molecular quantification provides a reproducible framework for medulloblastoma subgroup classification supported by both statistical and experimental consistency.</p>","PeriodicalId":10715,"journal":{"name":"Computational and structural biotechnology journal","volume":"27 ","pages":"3481-3491"},"PeriodicalIF":4.1000,"publicationDate":"2025-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12345876/pdf/","citationCount":"0","resultStr":"{\"title\":\"Machine learning identification of molecular targets for medulloblastoma subgroups using microarray gene fingerprint analysis.\",\"authors\":\"Alicia Reveles-Espinoza, Ulises Villela, Edgar Hernandez-Martinez, Isaac Chairez, Sergio Juárez-Méndez, J Casanova-Moreno, Ma Del Pilar Eguía-Aguilar, Luis Figueroa-Yáñez, Adriana Vallejo-Cardona, Iván Salgado\",\"doi\":\"10.1016/j.csbj.2025.07.033\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The study introduces a structured methodology for the identification of molecular targets that accurately classify medulloblastoma subgroups: WNT, SHH, Group 3 (G3) and Group 4 (G4). An artificial neural network (ANN) model trained on microarray gene expression data determined minimal gene combinations for each subgroup. The classification achieved an average accuracy of 96%, demonstrating the effectiveness of the proposed approach. Feature selection using the Kruskal-Wallis and <math> <msup><mrow><mi>χ</mi></mrow> <mrow><mn>2</mn></mrow> </msup> </math> tests revealed statistically relevant genes contributing to subgroup discrimination. Reverse transcription followed by digital Polymerase Chain Reaction (dPCR) measured the expression levels of a subset of these genes in tumor samples, validating the computational predictions with experimental evidence. The integration of machine learning and molecular quantification provides a reproducible framework for medulloblastoma subgroup classification supported by both statistical and experimental consistency.</p>\",\"PeriodicalId\":10715,\"journal\":{\"name\":\"Computational and structural biotechnology journal\",\"volume\":\"27 \",\"pages\":\"3481-3491\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2025-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12345876/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational and structural biotechnology journal\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.csbj.2025.07.033\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational and structural biotechnology journal","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.csbj.2025.07.033","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

该研究引入了一种结构化的方法,用于鉴定分子靶点,准确分类成神经管细胞瘤亚群:WNT, SHH, Group 3 (G3)和Group 4 (G4)。利用微阵列基因表达数据训练的人工神经网络(ANN)模型确定每个亚组的最小基因组合。分类的平均准确率达到96%,证明了所提方法的有效性。使用Kruskal-Wallis和χ 2检验的特征选择显示统计上相关的基因有助于亚群歧视。逆转录和数字聚合酶链反应(dPCR)测量了肿瘤样本中这些基因子集的表达水平,用实验证据验证了计算预测。机器学习和分子量化的整合为髓母细胞瘤亚群分类提供了一个可重复的框架,该框架得到了统计和实验一致性的支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Machine learning identification of molecular targets for medulloblastoma subgroups using microarray gene fingerprint analysis.

The study introduces a structured methodology for the identification of molecular targets that accurately classify medulloblastoma subgroups: WNT, SHH, Group 3 (G3) and Group 4 (G4). An artificial neural network (ANN) model trained on microarray gene expression data determined minimal gene combinations for each subgroup. The classification achieved an average accuracy of 96%, demonstrating the effectiveness of the proposed approach. Feature selection using the Kruskal-Wallis and χ 2 tests revealed statistically relevant genes contributing to subgroup discrimination. Reverse transcription followed by digital Polymerase Chain Reaction (dPCR) measured the expression levels of a subset of these genes in tumor samples, validating the computational predictions with experimental evidence. The integration of machine learning and molecular quantification provides a reproducible framework for medulloblastoma subgroup classification supported by both statistical and experimental consistency.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computational and structural biotechnology journal
Computational and structural biotechnology journal Biochemistry, Genetics and Molecular Biology-Biophysics
CiteScore
9.30
自引率
3.30%
发文量
540
审稿时长
6 weeks
期刊介绍: Computational and Structural Biotechnology Journal (CSBJ) is an online gold open access journal publishing research articles and reviews after full peer review. All articles are published, without barriers to access, immediately upon acceptance. The journal places a strong emphasis on functional and mechanistic understanding of how molecular components in a biological process work together through the application of computational methods. Structural data may provide such insights, but they are not a pre-requisite for publication in the journal. Specific areas of interest include, but are not limited to: Structure and function of proteins, nucleic acids and other macromolecules Structure and function of multi-component complexes Protein folding, processing and degradation Enzymology Computational and structural studies of plant systems Microbial Informatics Genomics Proteomics Metabolomics Algorithms and Hypothesis in Bioinformatics Mathematical and Theoretical Biology Computational Chemistry and Drug Discovery Microscopy and Molecular Imaging Nanotechnology Systems and Synthetic Biology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信