{"title":"Sigma非阿片类细胞内受体1激活通过抑制aim2驱动的炎症反应缓解脑卒中后认知障碍。","authors":"Hui Ma, Yue Chen, Yi-Mo Zhang, Yue Zhang, Xiao-Juan Hou, Hai-Long Li, Yi-Xin Yang, Qian Long, Xin Qiao, Yun-Feng Li","doi":"10.1111/bph.70134","DOIUrl":null,"url":null,"abstract":"<p><strong>Background and purpose: </strong>Ischaemic stroke is one of the most critical causes of death and disability worldwide, but its pharmacotherapies are currently lacking. This study aimed to investigate the effects of the sigma non-opioid intracellular receptor 1 agonist hypidone hydrochloride (YL-0919) on ischaemic stroke as well as the underlying mechanisms.</p><p><strong>Experimental approach: </strong>Male mice were subjected to a middle cerebral artery occlusion (MCAO)/reperfusion (R) model to mimic ischaemic stroke injury. Neurological and cognitive functions were evaluated, and neuroinflammatory pathways in the medial prefrontal cortex and hippocampus were detected.</p><p><strong>Key results: </strong>Mice subjected to MCAO exhibited obvious neurological and motor deficits, increased infarct volume and neuronal death in the acute phase, and severe cognitive impairment in the chronic phase. Administration of YL-0919 for seven consecutive days beginning within 7 h after MCAO significantly ameliorated the pathological changes described above. Further studies demonstrated that YL-0919 exerted its effect by suppressing absent in melanoma 2 (AIM2)-related inflammatory signals in MCAO mice and alleviated the neuronal deficits in the medial prefrontal cortex and hippocampus, thereby ameliorating chronic post-stroke cognitive impairment. This effect was eliminated by AIM2 overexpression in the medial prefrontal cortex and hippocampus.</p><p><strong>Conclusions and implications: </strong>This study highlights the extended therapeutic window for sigma non-opioid intracellular receptor 1 agonist administration during the acute phase of ischaemic stroke and further demonstrates that targeted inhibition of AIM2-mediated neuroinflammatory pathways may promote sustained cognitive rehabilitation in post-stroke survivors.</p>","PeriodicalId":9262,"journal":{"name":"British Journal of Pharmacology","volume":" ","pages":""},"PeriodicalIF":7.7000,"publicationDate":"2025-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sigma non-opioid intracellular receptor 1 activation relieves post-stroke cognitive impairment via suppressing AIM2-driven inflammatory response.\",\"authors\":\"Hui Ma, Yue Chen, Yi-Mo Zhang, Yue Zhang, Xiao-Juan Hou, Hai-Long Li, Yi-Xin Yang, Qian Long, Xin Qiao, Yun-Feng Li\",\"doi\":\"10.1111/bph.70134\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background and purpose: </strong>Ischaemic stroke is one of the most critical causes of death and disability worldwide, but its pharmacotherapies are currently lacking. This study aimed to investigate the effects of the sigma non-opioid intracellular receptor 1 agonist hypidone hydrochloride (YL-0919) on ischaemic stroke as well as the underlying mechanisms.</p><p><strong>Experimental approach: </strong>Male mice were subjected to a middle cerebral artery occlusion (MCAO)/reperfusion (R) model to mimic ischaemic stroke injury. Neurological and cognitive functions were evaluated, and neuroinflammatory pathways in the medial prefrontal cortex and hippocampus were detected.</p><p><strong>Key results: </strong>Mice subjected to MCAO exhibited obvious neurological and motor deficits, increased infarct volume and neuronal death in the acute phase, and severe cognitive impairment in the chronic phase. Administration of YL-0919 for seven consecutive days beginning within 7 h after MCAO significantly ameliorated the pathological changes described above. Further studies demonstrated that YL-0919 exerted its effect by suppressing absent in melanoma 2 (AIM2)-related inflammatory signals in MCAO mice and alleviated the neuronal deficits in the medial prefrontal cortex and hippocampus, thereby ameliorating chronic post-stroke cognitive impairment. This effect was eliminated by AIM2 overexpression in the medial prefrontal cortex and hippocampus.</p><p><strong>Conclusions and implications: </strong>This study highlights the extended therapeutic window for sigma non-opioid intracellular receptor 1 agonist administration during the acute phase of ischaemic stroke and further demonstrates that targeted inhibition of AIM2-mediated neuroinflammatory pathways may promote sustained cognitive rehabilitation in post-stroke survivors.</p>\",\"PeriodicalId\":9262,\"journal\":{\"name\":\"British Journal of Pharmacology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":7.7000,\"publicationDate\":\"2025-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"British Journal of Pharmacology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1111/bph.70134\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"British Journal of Pharmacology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/bph.70134","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Background and purpose: Ischaemic stroke is one of the most critical causes of death and disability worldwide, but its pharmacotherapies are currently lacking. This study aimed to investigate the effects of the sigma non-opioid intracellular receptor 1 agonist hypidone hydrochloride (YL-0919) on ischaemic stroke as well as the underlying mechanisms.
Experimental approach: Male mice were subjected to a middle cerebral artery occlusion (MCAO)/reperfusion (R) model to mimic ischaemic stroke injury. Neurological and cognitive functions were evaluated, and neuroinflammatory pathways in the medial prefrontal cortex and hippocampus were detected.
Key results: Mice subjected to MCAO exhibited obvious neurological and motor deficits, increased infarct volume and neuronal death in the acute phase, and severe cognitive impairment in the chronic phase. Administration of YL-0919 for seven consecutive days beginning within 7 h after MCAO significantly ameliorated the pathological changes described above. Further studies demonstrated that YL-0919 exerted its effect by suppressing absent in melanoma 2 (AIM2)-related inflammatory signals in MCAO mice and alleviated the neuronal deficits in the medial prefrontal cortex and hippocampus, thereby ameliorating chronic post-stroke cognitive impairment. This effect was eliminated by AIM2 overexpression in the medial prefrontal cortex and hippocampus.
Conclusions and implications: This study highlights the extended therapeutic window for sigma non-opioid intracellular receptor 1 agonist administration during the acute phase of ischaemic stroke and further demonstrates that targeted inhibition of AIM2-mediated neuroinflammatory pathways may promote sustained cognitive rehabilitation in post-stroke survivors.
期刊介绍:
The British Journal of Pharmacology (BJP) is a biomedical science journal offering comprehensive international coverage of experimental and translational pharmacology. It publishes original research, authoritative reviews, mini reviews, systematic reviews, meta-analyses, databases, letters to the Editor, and commentaries.
Review articles, databases, systematic reviews, and meta-analyses are typically commissioned, but unsolicited contributions are also considered, either as standalone papers or part of themed issues.
In addition to basic science research, BJP features translational pharmacology research, including proof-of-concept and early mechanistic studies in humans. While it generally does not publish first-in-man phase I studies or phase IIb, III, or IV studies, exceptions may be made under certain circumstances, particularly if results are combined with preclinical studies.