{"title":"瑞芬太尼通过上调成纤维细胞生长因子18减轻肝缺血/再灌注诱导的d1 -中棘神经元损伤","authors":"Yujuan You, Xianliang Xing, Binquan Tang, Huanling Deng, Enjun Lei, Yiguo Wu","doi":"10.1089/ars.2024.0892","DOIUrl":null,"url":null,"abstract":"<p><p><b><i>Aims:</i></b> Hepatic ischemia/reperfusion (I/R) injury induces liver damage and secondary neuronal injury, particularly in D1-medium spiny neurons (D1-MSNs). This study investigates whether remifentanil exerts neuroprotective effect by regulating oxidative stress and inflammation <i>via</i> fibroblast growth factor 18 (FGF18) upregulation. <b><i>Results:</i></b> Remifentanil markedly attenuated liver and striatal injury in a murine I/R model, as indicated by decreased serum levels of alanine aminotransferase, aspartate aminotransferase, lactate dehydrogenase, along with reduced inflammatory cytokines interleukin 1 beta and interleukin 18. Oxidative stress was mitigated through enhanced activities of antioxidant enzymes (superoxide dismutase, catalase, and glutathione peroxidase) and reduced reactive oxygen species levels, confirmed by lower dihydroethidium and mitochondrial superoxide indicator red fluorescence. Neuronal injury was alleviated, demonstrated by improved D1-MSN morphology, reduced apoptosis, increased expression of D1-dopamine receptor and Substance P, and fewer c-Fos-positive cells. Transcriptomic and machine learning analyses identified FGF18 as a key mediator of remifentanil's neuroprotective effects. Functional studies further confirmed that FGF18 overexpression reduced neuronal damage, whereas its knockdown abolished the protective effects of remifentanil, highlighting its pivotal role. <b><i>Innovation:</i></b> This study is the first to demonstrate that remifentanil exerts neuroprotective effects in hepatic I/R injury by upregulating FGF18, providing new insights into its combined hepatoprotective and neuroprotective mechanisms. <b><i>Conclusion:</i></b> Remifentanil mitigates hepatic I/R-induced injury to D1-MSNs by upregulating FGF18, thereby reducing oxidative stress and inflammation while preserving neuronal structure and function. These findings identify FGF18 as a potential therapeutic target for liver I/R-related neurological damage. <i>Antioxid. Redox Signal.</i> 00, 000-000.</p>","PeriodicalId":8011,"journal":{"name":"Antioxidants & redox signaling","volume":" ","pages":""},"PeriodicalIF":6.1000,"publicationDate":"2025-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Remifentanil Mitigates Hepatic Ischemia/Reperfusion-Induced D1-Medium Spiny Neurons Damage via Fibroblast Growth Factor 18 Upregulation.\",\"authors\":\"Yujuan You, Xianliang Xing, Binquan Tang, Huanling Deng, Enjun Lei, Yiguo Wu\",\"doi\":\"10.1089/ars.2024.0892\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><b><i>Aims:</i></b> Hepatic ischemia/reperfusion (I/R) injury induces liver damage and secondary neuronal injury, particularly in D1-medium spiny neurons (D1-MSNs). This study investigates whether remifentanil exerts neuroprotective effect by regulating oxidative stress and inflammation <i>via</i> fibroblast growth factor 18 (FGF18) upregulation. <b><i>Results:</i></b> Remifentanil markedly attenuated liver and striatal injury in a murine I/R model, as indicated by decreased serum levels of alanine aminotransferase, aspartate aminotransferase, lactate dehydrogenase, along with reduced inflammatory cytokines interleukin 1 beta and interleukin 18. Oxidative stress was mitigated through enhanced activities of antioxidant enzymes (superoxide dismutase, catalase, and glutathione peroxidase) and reduced reactive oxygen species levels, confirmed by lower dihydroethidium and mitochondrial superoxide indicator red fluorescence. Neuronal injury was alleviated, demonstrated by improved D1-MSN morphology, reduced apoptosis, increased expression of D1-dopamine receptor and Substance P, and fewer c-Fos-positive cells. Transcriptomic and machine learning analyses identified FGF18 as a key mediator of remifentanil's neuroprotective effects. Functional studies further confirmed that FGF18 overexpression reduced neuronal damage, whereas its knockdown abolished the protective effects of remifentanil, highlighting its pivotal role. <b><i>Innovation:</i></b> This study is the first to demonstrate that remifentanil exerts neuroprotective effects in hepatic I/R injury by upregulating FGF18, providing new insights into its combined hepatoprotective and neuroprotective mechanisms. <b><i>Conclusion:</i></b> Remifentanil mitigates hepatic I/R-induced injury to D1-MSNs by upregulating FGF18, thereby reducing oxidative stress and inflammation while preserving neuronal structure and function. These findings identify FGF18 as a potential therapeutic target for liver I/R-related neurological damage. <i>Antioxid. Redox Signal.</i> 00, 000-000.</p>\",\"PeriodicalId\":8011,\"journal\":{\"name\":\"Antioxidants & redox signaling\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2025-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Antioxidants & redox signaling\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1089/ars.2024.0892\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Antioxidants & redox signaling","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1089/ars.2024.0892","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Aims: Hepatic ischemia/reperfusion (I/R) injury induces liver damage and secondary neuronal injury, particularly in D1-medium spiny neurons (D1-MSNs). This study investigates whether remifentanil exerts neuroprotective effect by regulating oxidative stress and inflammation via fibroblast growth factor 18 (FGF18) upregulation. Results: Remifentanil markedly attenuated liver and striatal injury in a murine I/R model, as indicated by decreased serum levels of alanine aminotransferase, aspartate aminotransferase, lactate dehydrogenase, along with reduced inflammatory cytokines interleukin 1 beta and interleukin 18. Oxidative stress was mitigated through enhanced activities of antioxidant enzymes (superoxide dismutase, catalase, and glutathione peroxidase) and reduced reactive oxygen species levels, confirmed by lower dihydroethidium and mitochondrial superoxide indicator red fluorescence. Neuronal injury was alleviated, demonstrated by improved D1-MSN morphology, reduced apoptosis, increased expression of D1-dopamine receptor and Substance P, and fewer c-Fos-positive cells. Transcriptomic and machine learning analyses identified FGF18 as a key mediator of remifentanil's neuroprotective effects. Functional studies further confirmed that FGF18 overexpression reduced neuronal damage, whereas its knockdown abolished the protective effects of remifentanil, highlighting its pivotal role. Innovation: This study is the first to demonstrate that remifentanil exerts neuroprotective effects in hepatic I/R injury by upregulating FGF18, providing new insights into its combined hepatoprotective and neuroprotective mechanisms. Conclusion: Remifentanil mitigates hepatic I/R-induced injury to D1-MSNs by upregulating FGF18, thereby reducing oxidative stress and inflammation while preserving neuronal structure and function. These findings identify FGF18 as a potential therapeutic target for liver I/R-related neurological damage. Antioxid. Redox Signal. 00, 000-000.
期刊介绍:
Antioxidants & Redox Signaling (ARS) is the leading peer-reviewed journal dedicated to understanding the vital impact of oxygen and oxidation-reduction (redox) processes on human health and disease. The Journal explores key issues in genetic, pharmaceutical, and nutritional redox-based therapeutics. Cutting-edge research focuses on structural biology, stem cells, regenerative medicine, epigenetics, imaging, clinical outcomes, and preventive and therapeutic nutrition, among other areas.
ARS has expanded to create two unique foci within one journal: ARS Discoveries and ARS Therapeutics. ARS Discoveries (24 issues) publishes the highest-caliber breakthroughs in basic and applied research. ARS Therapeutics (12 issues) is the first publication of its kind that will help enhance the entire field of redox biology by showcasing the potential of redox sciences to change health outcomes.
ARS coverage includes:
-ROS/RNS as messengers
-Gaseous signal transducers
-Hypoxia and tissue oxygenation
-microRNA
-Prokaryotic systems
-Lessons from plant biology