由光子诱导中间体氧化实现的光子引发有机电合成。

IF 15.6 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Ahhyeon Choi, Doyeon Kim, Daniel Yim, Jungjin Park, Arun Sharma*, Woojae Kim*, Hyungjun Kim* and Hyunwoo Kim*, 
{"title":"由光子诱导中间体氧化实现的光子引发有机电合成。","authors":"Ahhyeon Choi,&nbsp;Doyeon Kim,&nbsp;Daniel Yim,&nbsp;Jungjin Park,&nbsp;Arun Sharma*,&nbsp;Woojae Kim*,&nbsp;Hyungjun Kim* and Hyunwoo Kim*,&nbsp;","doi":"10.1021/jacs.5c07822","DOIUrl":null,"url":null,"abstract":"<p >We present a catalyst-free strategy that combines photochemical and electrochemical activation to unlock unique reactivity in otherwise less reactive molecules. Photochemical excitation generates intermediates that can undergo electrochemical oxidation to form highly electrophilic species that can engage weak nucleophiles, enabling the synthesis of diverse heterocycles under mild conditions. Mechanistic studies, including voltammetric, spectroscopic, and computational analyses, suggest that a light-driven redox chain mechanism plays a crucial role, significantly enhancing the apparent Faradaic efficiency (&gt;100%). The broad substrate scope including bioactive scaffolds highlights the potential of this approach to expand the reactivity landscape in electrochemical synthesis.</p>","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":"147 34","pages":"30897–30906"},"PeriodicalIF":15.6000,"publicationDate":"2025-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Photon-Primed Organic Electrosynthesis Enabled by Oxidation of Photon-Induced Intermediates\",\"authors\":\"Ahhyeon Choi,&nbsp;Doyeon Kim,&nbsp;Daniel Yim,&nbsp;Jungjin Park,&nbsp;Arun Sharma*,&nbsp;Woojae Kim*,&nbsp;Hyungjun Kim* and Hyunwoo Kim*,&nbsp;\",\"doi\":\"10.1021/jacs.5c07822\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >We present a catalyst-free strategy that combines photochemical and electrochemical activation to unlock unique reactivity in otherwise less reactive molecules. Photochemical excitation generates intermediates that can undergo electrochemical oxidation to form highly electrophilic species that can engage weak nucleophiles, enabling the synthesis of diverse heterocycles under mild conditions. Mechanistic studies, including voltammetric, spectroscopic, and computational analyses, suggest that a light-driven redox chain mechanism plays a crucial role, significantly enhancing the apparent Faradaic efficiency (&gt;100%). The broad substrate scope including bioactive scaffolds highlights the potential of this approach to expand the reactivity landscape in electrochemical synthesis.</p>\",\"PeriodicalId\":49,\"journal\":{\"name\":\"Journal of the American Chemical Society\",\"volume\":\"147 34\",\"pages\":\"30897–30906\"},\"PeriodicalIF\":15.6000,\"publicationDate\":\"2025-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the American Chemical Society\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/jacs.5c07822\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/jacs.5c07822","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一种无催化剂的策略,结合了光化学和电化学激活,以解锁独特的反应性,否则反应性较差的分子。光化学激发产生的中间体可以进行电化学氧化,形成高度亲电的物质,这些物质可以与弱亲核试剂结合,从而在温和的条件下合成多种杂环。包括伏安、光谱和计算分析在内的机理研究表明,光驱动的氧化还原链机制起着至关重要的作用,显著提高了表观法拉第效率(>100%)。包括生物活性支架在内的广泛底物范围突出了这种方法在扩大电化学合成反应性方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Photon-Primed Organic Electrosynthesis Enabled by Oxidation of Photon-Induced Intermediates

Photon-Primed Organic Electrosynthesis Enabled by Oxidation of Photon-Induced Intermediates

We present a catalyst-free strategy that combines photochemical and electrochemical activation to unlock unique reactivity in otherwise less reactive molecules. Photochemical excitation generates intermediates that can undergo electrochemical oxidation to form highly electrophilic species that can engage weak nucleophiles, enabling the synthesis of diverse heterocycles under mild conditions. Mechanistic studies, including voltammetric, spectroscopic, and computational analyses, suggest that a light-driven redox chain mechanism plays a crucial role, significantly enhancing the apparent Faradaic efficiency (>100%). The broad substrate scope including bioactive scaffolds highlights the potential of this approach to expand the reactivity landscape in electrochemical synthesis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
24.40
自引率
6.00%
发文量
2398
审稿时长
1.6 months
期刊介绍: The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信