Ethan W. Slaton, Natalie Clay, Nathan Phan and Blaise R. Kimmel*,
{"title":"酵母合成生物学的创新:免疫治疗的工程发现系统。","authors":"Ethan W. Slaton, Natalie Clay, Nathan Phan and Blaise R. Kimmel*, ","doi":"10.1021/acssynbio.5c00321","DOIUrl":null,"url":null,"abstract":"<p >Yeast-based platforms are emerging as innovative synthetic biology tools for the discovery of immunotherapeutic proteins. Through the integration of (i) high-throughput surface display technologies, (ii) automated evolution systems (such as OrthoRep), and (iii) computational design strategies, the field of synthetic biology can make a direct impact toward rapidly identifying and engineering novel protein-based therapeutics. In this review, we will highlight the latest innovations regarding using engineered yeast to display proteins (e.g., nanobodies) and screen for potential antigens for immune receptors (e.g., GPCRs, TCRs). We will also discuss emerging areas in which the field has recently progressed and how the innovative technologies from these efforts help bridge the gap between synthetic biology and immunology such as identifying therapeutic binding events for engineered proteins of interest with the potential to actuate downstream immune responses. These innovations illustrate how yeast enables new design, build, test, and learn (DBTL) workflows in immunoengineering and offers a scalable, programmable chassis for developing tools and technologies for the construction of next-generation biotherapeutics.</p>","PeriodicalId":26,"journal":{"name":"ACS Synthetic Biology","volume":"14 9","pages":"3293–3305"},"PeriodicalIF":3.9000,"publicationDate":"2025-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Innovations in Yeast Synthetic Biology: Engineered Discovery Systems for Immunotherapy\",\"authors\":\"Ethan W. Slaton, Natalie Clay, Nathan Phan and Blaise R. Kimmel*, \",\"doi\":\"10.1021/acssynbio.5c00321\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Yeast-based platforms are emerging as innovative synthetic biology tools for the discovery of immunotherapeutic proteins. Through the integration of (i) high-throughput surface display technologies, (ii) automated evolution systems (such as OrthoRep), and (iii) computational design strategies, the field of synthetic biology can make a direct impact toward rapidly identifying and engineering novel protein-based therapeutics. In this review, we will highlight the latest innovations regarding using engineered yeast to display proteins (e.g., nanobodies) and screen for potential antigens for immune receptors (e.g., GPCRs, TCRs). We will also discuss emerging areas in which the field has recently progressed and how the innovative technologies from these efforts help bridge the gap between synthetic biology and immunology such as identifying therapeutic binding events for engineered proteins of interest with the potential to actuate downstream immune responses. These innovations illustrate how yeast enables new design, build, test, and learn (DBTL) workflows in immunoengineering and offers a scalable, programmable chassis for developing tools and technologies for the construction of next-generation biotherapeutics.</p>\",\"PeriodicalId\":26,\"journal\":{\"name\":\"ACS Synthetic Biology\",\"volume\":\"14 9\",\"pages\":\"3293–3305\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Synthetic Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acssynbio.5c00321\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Synthetic Biology","FirstCategoryId":"99","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acssynbio.5c00321","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Innovations in Yeast Synthetic Biology: Engineered Discovery Systems for Immunotherapy
Yeast-based platforms are emerging as innovative synthetic biology tools for the discovery of immunotherapeutic proteins. Through the integration of (i) high-throughput surface display technologies, (ii) automated evolution systems (such as OrthoRep), and (iii) computational design strategies, the field of synthetic biology can make a direct impact toward rapidly identifying and engineering novel protein-based therapeutics. In this review, we will highlight the latest innovations regarding using engineered yeast to display proteins (e.g., nanobodies) and screen for potential antigens for immune receptors (e.g., GPCRs, TCRs). We will also discuss emerging areas in which the field has recently progressed and how the innovative technologies from these efforts help bridge the gap between synthetic biology and immunology such as identifying therapeutic binding events for engineered proteins of interest with the potential to actuate downstream immune responses. These innovations illustrate how yeast enables new design, build, test, and learn (DBTL) workflows in immunoengineering and offers a scalable, programmable chassis for developing tools and technologies for the construction of next-generation biotherapeutics.
期刊介绍:
The journal is particularly interested in studies on the design and synthesis of new genetic circuits and gene products; computational methods in the design of systems; and integrative applied approaches to understanding disease and metabolism.
Topics may include, but are not limited to:
Design and optimization of genetic systems
Genetic circuit design and their principles for their organization into programs
Computational methods to aid the design of genetic systems
Experimental methods to quantify genetic parts, circuits, and metabolic fluxes
Genetic parts libraries: their creation, analysis, and ontological representation
Protein engineering including computational design
Metabolic engineering and cellular manufacturing, including biomass conversion
Natural product access, engineering, and production
Creative and innovative applications of cellular programming
Medical applications, tissue engineering, and the programming of therapeutic cells
Minimal cell design and construction
Genomics and genome replacement strategies
Viral engineering
Automated and robotic assembly platforms for synthetic biology
DNA synthesis methodologies
Metagenomics and synthetic metagenomic analysis
Bioinformatics applied to gene discovery, chemoinformatics, and pathway construction
Gene optimization
Methods for genome-scale measurements of transcription and metabolomics
Systems biology and methods to integrate multiple data sources
in vitro and cell-free synthetic biology and molecular programming
Nucleic acid engineering.