挖掘微藻的潜力:基因精度和应力诱导以增强虾青素和生物燃料的生产

IF 6.1 1区 工程技术 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Ankush Yadav, Suhani Sharma,  Nitesh, Rinku Meena, Rupesh Bhardwaj, Prashant Swapnil, Mukesh Meena
{"title":"挖掘微藻的潜力:基因精度和应力诱导以增强虾青素和生物燃料的生产","authors":"Ankush Yadav,&nbsp;Suhani Sharma,&nbsp; Nitesh,&nbsp;Rinku Meena,&nbsp;Rupesh Bhardwaj,&nbsp;Prashant Swapnil,&nbsp;Mukesh Meena","doi":"10.1186/s13068-025-02656-z","DOIUrl":null,"url":null,"abstract":"<div><p>Population growth throughout the world has led to increased pollution and overconsumption of fossil resources. Microalgae are increasingly recognized as sustainable biofactories for producing lipids and astaxanthin, two commercially significant metabolites with wide-ranging applications in biofuel, pharmaceutical, cosmetic, and nutraceutical industries. Enhancing the yields of these compounds remains a major challenge due to growth–productivity trade-offs and limited understanding of regulatory mechanisms. This review aims to bridge that gap by providing a comprehensive and comparative analysis of traditional and modern strategies employed to enhance lipid and astaxanthin production in microalgae. We critically evaluate stress-based methods (e.g., salinity, light, nutrient limitation), phytohormone treatments, cultivation system optimization, and genome editing technologies, including CRISPR/Cas9. Special emphasis is given to gene-level responses and pathway-level regulation involved in these enhancements. This review article highlights the novel synchronization between astaxanthin and fatty acid biosynthesis under various stress conditions which emphasizes the role of diacylglycerol acyltransferase (DGAT) enzymes to enhance astaxanthin accumulation. Editing technologies with base suggest a novel strategy to reduce off-target effects and enhance metabolic efficiency related to lipid and astaxanthin biosynthesis.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":494,"journal":{"name":"Biotechnology for Biofuels","volume":"18 1","pages":""},"PeriodicalIF":6.1000,"publicationDate":"2025-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://biotechnologyforbiofuels.biomedcentral.com/counter/pdf/10.1186/s13068-025-02656-z","citationCount":"0","resultStr":"{\"title\":\"Tapping the microalgal potential: genetic precision and stress-induction for enhanced astaxanthin and biofuel production\",\"authors\":\"Ankush Yadav,&nbsp;Suhani Sharma,&nbsp; Nitesh,&nbsp;Rinku Meena,&nbsp;Rupesh Bhardwaj,&nbsp;Prashant Swapnil,&nbsp;Mukesh Meena\",\"doi\":\"10.1186/s13068-025-02656-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Population growth throughout the world has led to increased pollution and overconsumption of fossil resources. Microalgae are increasingly recognized as sustainable biofactories for producing lipids and astaxanthin, two commercially significant metabolites with wide-ranging applications in biofuel, pharmaceutical, cosmetic, and nutraceutical industries. Enhancing the yields of these compounds remains a major challenge due to growth–productivity trade-offs and limited understanding of regulatory mechanisms. This review aims to bridge that gap by providing a comprehensive and comparative analysis of traditional and modern strategies employed to enhance lipid and astaxanthin production in microalgae. We critically evaluate stress-based methods (e.g., salinity, light, nutrient limitation), phytohormone treatments, cultivation system optimization, and genome editing technologies, including CRISPR/Cas9. Special emphasis is given to gene-level responses and pathway-level regulation involved in these enhancements. This review article highlights the novel synchronization between astaxanthin and fatty acid biosynthesis under various stress conditions which emphasizes the role of diacylglycerol acyltransferase (DGAT) enzymes to enhance astaxanthin accumulation. Editing technologies with base suggest a novel strategy to reduce off-target effects and enhance metabolic efficiency related to lipid and astaxanthin biosynthesis.</p><h3>Graphical Abstract</h3>\\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":494,\"journal\":{\"name\":\"Biotechnology for Biofuels\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2025-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://biotechnologyforbiofuels.biomedcentral.com/counter/pdf/10.1186/s13068-025-02656-z\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biotechnology for Biofuels\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s13068-025-02656-z\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology for Biofuels","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1186/s13068-025-02656-z","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

全世界人口的增长导致了污染的增加和化石资源的过度消耗。微藻越来越被认为是生产脂质和虾青素的可持续生物工厂,这两种具有商业意义的代谢物在生物燃料、制药、化妆品和营养保健行业有着广泛的应用。提高这些化合物的产量仍然是一个主要的挑战,由于生长和生产力的权衡和对调控机制的有限理解。这篇综述旨在通过提供传统和现代策略的全面和比较分析来弥补这一差距,这些策略用于提高微藻的脂质和虾青素的产量。我们批判性地评估了基于胁迫的方法(如盐度、光照、营养限制)、植物激素处理、培养系统优化和基因组编辑技术,包括CRISPR/Cas9。特别强调的是基因水平的反应和途径水平的调控参与这些增强。本文综述了不同胁迫条件下虾青素与脂肪酸生物合成之间的新型同步性,强调了二酰基甘油酰基转移酶(DGAT)酶在促进虾青素积累中的作用。碱基编辑技术为减少脱靶效应、提高脂质和虾青素生物合成相关代谢效率提供了一种新的策略。图形抽象
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Tapping the microalgal potential: genetic precision and stress-induction for enhanced astaxanthin and biofuel production

Population growth throughout the world has led to increased pollution and overconsumption of fossil resources. Microalgae are increasingly recognized as sustainable biofactories for producing lipids and astaxanthin, two commercially significant metabolites with wide-ranging applications in biofuel, pharmaceutical, cosmetic, and nutraceutical industries. Enhancing the yields of these compounds remains a major challenge due to growth–productivity trade-offs and limited understanding of regulatory mechanisms. This review aims to bridge that gap by providing a comprehensive and comparative analysis of traditional and modern strategies employed to enhance lipid and astaxanthin production in microalgae. We critically evaluate stress-based methods (e.g., salinity, light, nutrient limitation), phytohormone treatments, cultivation system optimization, and genome editing technologies, including CRISPR/Cas9. Special emphasis is given to gene-level responses and pathway-level regulation involved in these enhancements. This review article highlights the novel synchronization between astaxanthin and fatty acid biosynthesis under various stress conditions which emphasizes the role of diacylglycerol acyltransferase (DGAT) enzymes to enhance astaxanthin accumulation. Editing technologies with base suggest a novel strategy to reduce off-target effects and enhance metabolic efficiency related to lipid and astaxanthin biosynthesis.

Graphical Abstract

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biotechnology for Biofuels
Biotechnology for Biofuels 工程技术-生物工程与应用微生物
自引率
0.00%
发文量
0
审稿时长
2.7 months
期刊介绍: Biotechnology for Biofuels is an open access peer-reviewed journal featuring high-quality studies describing technological and operational advances in the production of biofuels, chemicals and other bioproducts. The journal emphasizes understanding and advancing the application of biotechnology and synergistic operations to improve plants and biological conversion systems for the biological production of these products from biomass, intermediates derived from biomass, or CO2, as well as upstream or downstream operations that are integral to biological conversion of biomass. Biotechnology for Biofuels focuses on the following areas: • Development of terrestrial plant feedstocks • Development of algal feedstocks • Biomass pretreatment, fractionation and extraction for biological conversion • Enzyme engineering, production and analysis • Bacterial genetics, physiology and metabolic engineering • Fungal/yeast genetics, physiology and metabolic engineering • Fermentation, biocatalytic conversion and reaction dynamics • Biological production of chemicals and bioproducts from biomass • Anaerobic digestion, biohydrogen and bioelectricity • Bioprocess integration, techno-economic analysis, modelling and policy • Life cycle assessment and environmental impact analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信