SiC晶圆上的高性能AlN/GaN/AlGaN-MOSHEMTs:未来雷达和通信系统的缩放和栅极材料创新

IF 0.9 4区 物理与天体物理 Q3 PHYSICS, MULTIDISCIPLINARY
Lavanya Repaka, J. Ajayan, Asisa Kumar Panigrahy, Sandip Bhattacharya, B. Mounika
{"title":"SiC晶圆上的高性能AlN/GaN/AlGaN-MOSHEMTs:未来雷达和通信系统的缩放和栅极材料创新","authors":"Lavanya Repaka,&nbsp;J. Ajayan,&nbsp;Asisa Kumar Panigrahy,&nbsp;Sandip Bhattacharya,&nbsp;B. Mounika","doi":"10.1007/s40042-025-01415-5","DOIUrl":null,"url":null,"abstract":"<div><p>The DC/RF performance of a T-gate AlN/GaN heterojunction MOS-HEMT (AGMH) device on SiC substrate with a Hafnium-based high-k gate dielectric material is thoroughly and meticulously investigated in this article. The research investigation looks at how different gate lengths affect important device metrics, such as cut-off frequency (<i>f</i><sub><i>T</i></sub>), intrinsic capacitances (C<sub>GD</sub> &amp; C<sub>GS</sub>), G<sub>M</sub> (transconductance), and I<sub>D</sub> (drain current). The proposed AGMH device with L<sub>G</sub> of 40 nm, t<sub>b</sub> of 3 nm, t<sub>ox</sub> of 3 nm, L<sub>GS</sub> of 250 nm, &amp; L<sub>GD</sub> of 400 nm exhibited I<sub>D-max</sub> (maximum I<sub>D</sub>) of 2.221 A/mm, G<sub>M-peak</sub> (peak transconductance) of 505.5 mS/mm, &amp; <i>f</i><sub><i>T-max</i></sub> (maximum <i>f</i><sub><i>T</i></sub>) of 256 GHz. The remarkable DC/RF performance results from strong carrier confinement &amp; minimized leakage current (I<sub>DL</sub>) enabled by scaling down the device parameters. This makes them a desirable option for RF power electronics and microwave (µw) applications in future generations, with a great deal of room for performance and efficiency gains.</p></div>","PeriodicalId":677,"journal":{"name":"Journal of the Korean Physical Society","volume":"87 4","pages":"414 - 429"},"PeriodicalIF":0.9000,"publicationDate":"2025-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High-performance AlN/GaN/AlGaN-MOSHEMTs on SiC wafer: scaling and gate material innovations for upcoming radar and communication systems\",\"authors\":\"Lavanya Repaka,&nbsp;J. Ajayan,&nbsp;Asisa Kumar Panigrahy,&nbsp;Sandip Bhattacharya,&nbsp;B. Mounika\",\"doi\":\"10.1007/s40042-025-01415-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The DC/RF performance of a T-gate AlN/GaN heterojunction MOS-HEMT (AGMH) device on SiC substrate with a Hafnium-based high-k gate dielectric material is thoroughly and meticulously investigated in this article. The research investigation looks at how different gate lengths affect important device metrics, such as cut-off frequency (<i>f</i><sub><i>T</i></sub>), intrinsic capacitances (C<sub>GD</sub> &amp; C<sub>GS</sub>), G<sub>M</sub> (transconductance), and I<sub>D</sub> (drain current). The proposed AGMH device with L<sub>G</sub> of 40 nm, t<sub>b</sub> of 3 nm, t<sub>ox</sub> of 3 nm, L<sub>GS</sub> of 250 nm, &amp; L<sub>GD</sub> of 400 nm exhibited I<sub>D-max</sub> (maximum I<sub>D</sub>) of 2.221 A/mm, G<sub>M-peak</sub> (peak transconductance) of 505.5 mS/mm, &amp; <i>f</i><sub><i>T-max</i></sub> (maximum <i>f</i><sub><i>T</i></sub>) of 256 GHz. The remarkable DC/RF performance results from strong carrier confinement &amp; minimized leakage current (I<sub>DL</sub>) enabled by scaling down the device parameters. This makes them a desirable option for RF power electronics and microwave (µw) applications in future generations, with a great deal of room for performance and efficiency gains.</p></div>\",\"PeriodicalId\":677,\"journal\":{\"name\":\"Journal of the Korean Physical Society\",\"volume\":\"87 4\",\"pages\":\"414 - 429\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2025-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Korean Physical Society\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40042-025-01415-5\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Korean Physical Society","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s40042-025-01415-5","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本文对基于铪基高k栅介电材料的SiC衬底t栅AlN/GaN异质结MOS-HEMT (AGMH)器件的DC/RF性能进行了深入细致的研究。研究调查着眼于不同的栅极长度如何影响重要的器件指标,如截止频率(fT),固有电容(CGD &;CGS), GM(跨导)和ID(漏极电流)。所提出的AGMH器件,LG为40 nm, tb为3 nm, tox为3 nm, LGS为250 nm, &;400 nm的LGD的ID-max(最大ID)为2.221 A/mm, GM-peak(峰跨导)为505.5 mS/mm, &;fT-max(最大fT) 256ghz。出色的DC/RF性能源于强大的载流子约束。最小化漏电流(IDL)通过缩小器件参数实现。这使得它们成为未来几代射频功率电子和微波(μ w)应用的理想选择,具有很大的性能和效率提升空间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
High-performance AlN/GaN/AlGaN-MOSHEMTs on SiC wafer: scaling and gate material innovations for upcoming radar and communication systems

The DC/RF performance of a T-gate AlN/GaN heterojunction MOS-HEMT (AGMH) device on SiC substrate with a Hafnium-based high-k gate dielectric material is thoroughly and meticulously investigated in this article. The research investigation looks at how different gate lengths affect important device metrics, such as cut-off frequency (fT), intrinsic capacitances (CGD & CGS), GM (transconductance), and ID (drain current). The proposed AGMH device with LG of 40 nm, tb of 3 nm, tox of 3 nm, LGS of 250 nm, & LGD of 400 nm exhibited ID-max (maximum ID) of 2.221 A/mm, GM-peak (peak transconductance) of 505.5 mS/mm, & fT-max (maximum fT) of 256 GHz. The remarkable DC/RF performance results from strong carrier confinement & minimized leakage current (IDL) enabled by scaling down the device parameters. This makes them a desirable option for RF power electronics and microwave (µw) applications in future generations, with a great deal of room for performance and efficiency gains.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of the Korean Physical Society
Journal of the Korean Physical Society PHYSICS, MULTIDISCIPLINARY-
CiteScore
1.20
自引率
16.70%
发文量
276
审稿时长
5.5 months
期刊介绍: The Journal of the Korean Physical Society (JKPS) covers all fields of physics spanning from statistical physics and condensed matter physics to particle physics. The manuscript to be published in JKPS is required to hold the originality, significance, and recent completeness. The journal is composed of Full paper, Letters, and Brief sections. In addition, featured articles with outstanding results are selected by the Editorial board and introduced in the online version. For emphasis on aspect of international journal, several world-distinguished researchers join the Editorial board. High quality of papers may be express-published when it is recommended or requested.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信