Chang-quan Zhou, Hua-Shu Dou, Lin Niu, Wen-qian Xu
{"title":"间隙宽度对Taylor-Couette流动湍流转捩的影响","authors":"Chang-quan Zhou, Hua-Shu Dou, Lin Niu, Wen-qian Xu","doi":"10.1007/s42241-025-0019-0","DOIUrl":null,"url":null,"abstract":"<div><p>Simulations of the transitional flow in Taylor-Couette configuration are carried out to study the effect of the gap width on turbulent transition. The research results show that, under the same radius and the rotating speed of the inner cylinder, as the gap width increases, the flow becomes more stable. It is discovered that the average velocity distribution in the gap approaches the free vortex flow as the width increase and the stability of the flow is enhanced. It is found that, as the gap width increases, the maximum of the energy gradient function (from the energy gradient theory) in the gap decreases, which delays the turbulent transition. As such, the larger the gap width, the later the transition occurs. As the gap width increases, the Reynolds number based on the gap width alone is not able to characterize the flow behavior in Taylor-Couette flows, and the effect of the radius ratio should be taken into account.</p></div>","PeriodicalId":637,"journal":{"name":"Journal of Hydrodynamics","volume":"37 2","pages":"294 - 301"},"PeriodicalIF":3.5000,"publicationDate":"2025-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of gap width on turbulent transition in Taylor-Couette flow\",\"authors\":\"Chang-quan Zhou, Hua-Shu Dou, Lin Niu, Wen-qian Xu\",\"doi\":\"10.1007/s42241-025-0019-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Simulations of the transitional flow in Taylor-Couette configuration are carried out to study the effect of the gap width on turbulent transition. The research results show that, under the same radius and the rotating speed of the inner cylinder, as the gap width increases, the flow becomes more stable. It is discovered that the average velocity distribution in the gap approaches the free vortex flow as the width increase and the stability of the flow is enhanced. It is found that, as the gap width increases, the maximum of the energy gradient function (from the energy gradient theory) in the gap decreases, which delays the turbulent transition. As such, the larger the gap width, the later the transition occurs. As the gap width increases, the Reynolds number based on the gap width alone is not able to characterize the flow behavior in Taylor-Couette flows, and the effect of the radius ratio should be taken into account.</p></div>\",\"PeriodicalId\":637,\"journal\":{\"name\":\"Journal of Hydrodynamics\",\"volume\":\"37 2\",\"pages\":\"294 - 301\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Hydrodynamics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s42241-025-0019-0\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hydrodynamics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s42241-025-0019-0","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Effect of gap width on turbulent transition in Taylor-Couette flow
Simulations of the transitional flow in Taylor-Couette configuration are carried out to study the effect of the gap width on turbulent transition. The research results show that, under the same radius and the rotating speed of the inner cylinder, as the gap width increases, the flow becomes more stable. It is discovered that the average velocity distribution in the gap approaches the free vortex flow as the width increase and the stability of the flow is enhanced. It is found that, as the gap width increases, the maximum of the energy gradient function (from the energy gradient theory) in the gap decreases, which delays the turbulent transition. As such, the larger the gap width, the later the transition occurs. As the gap width increases, the Reynolds number based on the gap width alone is not able to characterize the flow behavior in Taylor-Couette flows, and the effect of the radius ratio should be taken into account.
期刊介绍:
Journal of Hydrodynamics is devoted to the publication of original theoretical, computational and experimental contributions to the all aspects of hydrodynamics. It covers advances in the naval architecture and ocean engineering, marine and ocean engineering, environmental engineering, water conservancy and hydropower engineering, energy exploration, chemical engineering, biological and biomedical engineering etc.