{"title":"行人过马路意图预测的行人-车辆信息调制","authors":"Li Xu;Shaodi You;Gang He;Yunsong Li","doi":"10.1109/TIV.2024.3437779","DOIUrl":null,"url":null,"abstract":"Pedestrian crossing intention prediction (PCIP) is crucial for pedestrians' safety in autonomous driving. Existing methods do not use the interaction between pedestrians and cars for their prediction. In this paper, we argue that pedestrians' intentions are highly dependent on their interaction with the environment. Specifically, the trajectories of pedestrians and the dynamic of vehicles jointly affect the entire traffic environment in the future. Therefore, in this paper, we propose a novel pedestrian-vehicle information modulation network (PVIM). Particularly, we first propose a pedestrian-vehicle spatial context (PVSC) that effectively models the spatial dynamics between the pedestrian and ego-vehicle. Second, we design a temporal bilinear attention module that removes temporal redundancy and consolidates temporal correlation for more accurate predictions. We have conducted extensive experiments on the PIE pedestrian action prediction benchmark and have achieved state-of-the-art performance. Specifically, the proposed method achieves an accuracy of 0.91, outperforming the previous best by 2%.","PeriodicalId":36532,"journal":{"name":"IEEE Transactions on Intelligent Vehicles","volume":"10 3","pages":"1919-1930"},"PeriodicalIF":14.3000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pedestrian-Vehicle Information Modulation for Pedestrian Crossing Intention Prediction\",\"authors\":\"Li Xu;Shaodi You;Gang He;Yunsong Li\",\"doi\":\"10.1109/TIV.2024.3437779\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Pedestrian crossing intention prediction (PCIP) is crucial for pedestrians' safety in autonomous driving. Existing methods do not use the interaction between pedestrians and cars for their prediction. In this paper, we argue that pedestrians' intentions are highly dependent on their interaction with the environment. Specifically, the trajectories of pedestrians and the dynamic of vehicles jointly affect the entire traffic environment in the future. Therefore, in this paper, we propose a novel pedestrian-vehicle information modulation network (PVIM). Particularly, we first propose a pedestrian-vehicle spatial context (PVSC) that effectively models the spatial dynamics between the pedestrian and ego-vehicle. Second, we design a temporal bilinear attention module that removes temporal redundancy and consolidates temporal correlation for more accurate predictions. We have conducted extensive experiments on the PIE pedestrian action prediction benchmark and have achieved state-of-the-art performance. Specifically, the proposed method achieves an accuracy of 0.91, outperforming the previous best by 2%.\",\"PeriodicalId\":36532,\"journal\":{\"name\":\"IEEE Transactions on Intelligent Vehicles\",\"volume\":\"10 3\",\"pages\":\"1919-1930\"},\"PeriodicalIF\":14.3000,\"publicationDate\":\"2024-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Intelligent Vehicles\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10670215/\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Intelligent Vehicles","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10670215/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Pedestrian-Vehicle Information Modulation for Pedestrian Crossing Intention Prediction
Pedestrian crossing intention prediction (PCIP) is crucial for pedestrians' safety in autonomous driving. Existing methods do not use the interaction between pedestrians and cars for their prediction. In this paper, we argue that pedestrians' intentions are highly dependent on their interaction with the environment. Specifically, the trajectories of pedestrians and the dynamic of vehicles jointly affect the entire traffic environment in the future. Therefore, in this paper, we propose a novel pedestrian-vehicle information modulation network (PVIM). Particularly, we first propose a pedestrian-vehicle spatial context (PVSC) that effectively models the spatial dynamics between the pedestrian and ego-vehicle. Second, we design a temporal bilinear attention module that removes temporal redundancy and consolidates temporal correlation for more accurate predictions. We have conducted extensive experiments on the PIE pedestrian action prediction benchmark and have achieved state-of-the-art performance. Specifically, the proposed method achieves an accuracy of 0.91, outperforming the previous best by 2%.
期刊介绍:
The IEEE Transactions on Intelligent Vehicles (T-IV) is a premier platform for publishing peer-reviewed articles that present innovative research concepts, application results, significant theoretical findings, and application case studies in the field of intelligent vehicles. With a particular emphasis on automated vehicles within roadway environments, T-IV aims to raise awareness of pressing research and application challenges.
Our focus is on providing critical information to the intelligent vehicle community, serving as a dissemination vehicle for IEEE ITS Society members and others interested in learning about the state-of-the-art developments and progress in research and applications related to intelligent vehicles. Join us in advancing knowledge and innovation in this dynamic field.