Alexander Jenkins;Thiernithi Variddhisai;Ahmed El-Medany;Fu Siong Ng;Danilo Mandic
{"title":"基于时间顶点自适应滤波器的在线图拓扑学习:从理论到心脏纤颤","authors":"Alexander Jenkins;Thiernithi Variddhisai;Ahmed El-Medany;Fu Siong Ng;Danilo Mandic","doi":"10.1109/TSIPN.2025.3594003","DOIUrl":null,"url":null,"abstract":"Graph Signal Processing (GSP) provides a powerful framework for analysing complex, interconnected systems by modelling data as signals on graphs. While recent advances have enabled graph topology learning from observed signals, existing methods often struggle with time-varying systems and real-time applications. To address this gap, we introduce AdaCGP, a sparsity-aware adaptive algorithm for dynamic graph topology estimation from multivariate time series. AdaCGP estimates the Graph Shift Operator (GSO) through recursive update formulae designed to address sparsity, shift-invariance, and bias. Through comprehensive simulations, we demonstrate that AdaCGP consistently outperforms multiple baselines across diverse graph topologies, achieving improvements exceeding 83% in GSO estimation compared to state-of-the-art methods while maintaining favourable computational scaling properties. Our variable splitting approach enables reliable identification of causal connections with near-zero false alarm rates and minimal missed edges. Applied to cardiac fibrillation recordings, AdaCGP tracks dynamic changes in propagation patterns more effectively than established methods like Granger causality, capturing temporal variations in graph topology that static approaches miss. The algorithm successfully identifies stability characteristics in conduction patterns that may maintain arrhythmias, demonstrating potential for clinical applications in diagnosis and treatment of complex biomedical systems.","PeriodicalId":56268,"journal":{"name":"IEEE Transactions on Signal and Information Processing over Networks","volume":"11 ","pages":"965-979"},"PeriodicalIF":3.0000,"publicationDate":"2025-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Online Graph Topology Learning via Time-Vertex Adaptive Filters: From Theory to Cardiac Fibrillation\",\"authors\":\"Alexander Jenkins;Thiernithi Variddhisai;Ahmed El-Medany;Fu Siong Ng;Danilo Mandic\",\"doi\":\"10.1109/TSIPN.2025.3594003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Graph Signal Processing (GSP) provides a powerful framework for analysing complex, interconnected systems by modelling data as signals on graphs. While recent advances have enabled graph topology learning from observed signals, existing methods often struggle with time-varying systems and real-time applications. To address this gap, we introduce AdaCGP, a sparsity-aware adaptive algorithm for dynamic graph topology estimation from multivariate time series. AdaCGP estimates the Graph Shift Operator (GSO) through recursive update formulae designed to address sparsity, shift-invariance, and bias. Through comprehensive simulations, we demonstrate that AdaCGP consistently outperforms multiple baselines across diverse graph topologies, achieving improvements exceeding 83% in GSO estimation compared to state-of-the-art methods while maintaining favourable computational scaling properties. Our variable splitting approach enables reliable identification of causal connections with near-zero false alarm rates and minimal missed edges. Applied to cardiac fibrillation recordings, AdaCGP tracks dynamic changes in propagation patterns more effectively than established methods like Granger causality, capturing temporal variations in graph topology that static approaches miss. The algorithm successfully identifies stability characteristics in conduction patterns that may maintain arrhythmias, demonstrating potential for clinical applications in diagnosis and treatment of complex biomedical systems.\",\"PeriodicalId\":56268,\"journal\":{\"name\":\"IEEE Transactions on Signal and Information Processing over Networks\",\"volume\":\"11 \",\"pages\":\"965-979\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Signal and Information Processing over Networks\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11119191/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Signal and Information Processing over Networks","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/11119191/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Online Graph Topology Learning via Time-Vertex Adaptive Filters: From Theory to Cardiac Fibrillation
Graph Signal Processing (GSP) provides a powerful framework for analysing complex, interconnected systems by modelling data as signals on graphs. While recent advances have enabled graph topology learning from observed signals, existing methods often struggle with time-varying systems and real-time applications. To address this gap, we introduce AdaCGP, a sparsity-aware adaptive algorithm for dynamic graph topology estimation from multivariate time series. AdaCGP estimates the Graph Shift Operator (GSO) through recursive update formulae designed to address sparsity, shift-invariance, and bias. Through comprehensive simulations, we demonstrate that AdaCGP consistently outperforms multiple baselines across diverse graph topologies, achieving improvements exceeding 83% in GSO estimation compared to state-of-the-art methods while maintaining favourable computational scaling properties. Our variable splitting approach enables reliable identification of causal connections with near-zero false alarm rates and minimal missed edges. Applied to cardiac fibrillation recordings, AdaCGP tracks dynamic changes in propagation patterns more effectively than established methods like Granger causality, capturing temporal variations in graph topology that static approaches miss. The algorithm successfully identifies stability characteristics in conduction patterns that may maintain arrhythmias, demonstrating potential for clinical applications in diagnosis and treatment of complex biomedical systems.
期刊介绍:
The IEEE Transactions on Signal and Information Processing over Networks publishes high-quality papers that extend the classical notions of processing of signals defined over vector spaces (e.g. time and space) to processing of signals and information (data) defined over networks, potentially dynamically varying. In signal processing over networks, the topology of the network may define structural relationships in the data, or may constrain processing of the data. Topics include distributed algorithms for filtering, detection, estimation, adaptation and learning, model selection, data fusion, and diffusion or evolution of information over such networks, and applications of distributed signal processing.