利用地震到达时间模式和梯度增强决策树进行地震定位和震级估计

IF 4.2
Saeed SoltaniMoghadam, Anooshiravan Ansari, Leila Etemadsaeed, Mohammad Tatar, Meysam Mahmoodabadi
{"title":"利用地震到达时间模式和梯度增强决策树进行地震定位和震级估计","authors":"Saeed SoltaniMoghadam,&nbsp;Anooshiravan Ansari,&nbsp;Leila Etemadsaeed,&nbsp;Mohammad Tatar,&nbsp;Meysam Mahmoodabadi","doi":"10.1016/j.aiig.2025.100149","DOIUrl":null,"url":null,"abstract":"<div><div>We present a machine learning approach for earthquake location and magnitude estimation based on seismic arrival time patterns, using Histogram-Based Gradient Boosting for its high accuracy and computational efficiency. The model is first evaluated using a synthetic earthquake bulletin that simulates realistic network geometry, station-event distributions, and incorporates a 3D velocity model for accurate travel-time computation. Input features include P and S arrival times and amplitudes, while targets consist of location, origin time, magnitude, and uncertainty measures (horizontal and depth errors, azimuthal gap). Model performance is evaluated using <span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>, Mean Absolute Error (MAE), and Median Absolute Error (MEDAE), demonstrating high accuracy across datasets with varying levels of completeness. Finally, we validate the model using real-world data from the Ahar-Varzaghan 2012 aftershock sequence in NW Iran. The model accurately recovers key spatial patterns of seismicity despite significant missing data, and the results align with previous high-resolution studies. These findings confirm that the proposed method generalizes well beyond synthetic settings and offers a fast, robust alternative for operational seismic networks and rapid hazard assessment.</div></div>","PeriodicalId":100124,"journal":{"name":"Artificial Intelligence in Geosciences","volume":"6 2","pages":"Article 100149"},"PeriodicalIF":4.2000,"publicationDate":"2025-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Earthquake location and magnitude estimation using seismic arrival times pattern and gradient boosted decision trees\",\"authors\":\"Saeed SoltaniMoghadam,&nbsp;Anooshiravan Ansari,&nbsp;Leila Etemadsaeed,&nbsp;Mohammad Tatar,&nbsp;Meysam Mahmoodabadi\",\"doi\":\"10.1016/j.aiig.2025.100149\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We present a machine learning approach for earthquake location and magnitude estimation based on seismic arrival time patterns, using Histogram-Based Gradient Boosting for its high accuracy and computational efficiency. The model is first evaluated using a synthetic earthquake bulletin that simulates realistic network geometry, station-event distributions, and incorporates a 3D velocity model for accurate travel-time computation. Input features include P and S arrival times and amplitudes, while targets consist of location, origin time, magnitude, and uncertainty measures (horizontal and depth errors, azimuthal gap). Model performance is evaluated using <span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>, Mean Absolute Error (MAE), and Median Absolute Error (MEDAE), demonstrating high accuracy across datasets with varying levels of completeness. Finally, we validate the model using real-world data from the Ahar-Varzaghan 2012 aftershock sequence in NW Iran. The model accurately recovers key spatial patterns of seismicity despite significant missing data, and the results align with previous high-resolution studies. These findings confirm that the proposed method generalizes well beyond synthetic settings and offers a fast, robust alternative for operational seismic networks and rapid hazard assessment.</div></div>\",\"PeriodicalId\":100124,\"journal\":{\"name\":\"Artificial Intelligence in Geosciences\",\"volume\":\"6 2\",\"pages\":\"Article 100149\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2025-08-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Artificial Intelligence in Geosciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666544125000450\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Intelligence in Geosciences","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666544125000450","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一种基于地震到达时间模式的地震定位和震级估计的机器学习方法,使用基于直方图的梯度增强,以获得高精度和计算效率。该模型首先使用合成地震公报进行评估,该公报模拟了真实的网络几何形状,站-事件分布,并结合了3D速度模型以进行精确的走时计算。输入特征包括P和S到达时间和振幅,而目标包括位置、起始时间、震级和不确定性测量(水平和深度误差、方位角差距)。使用R2、平均绝对误差(MAE)和中位数绝对误差(MEDAE)对模型性能进行评估,显示出不同完整性水平的数据集具有较高的准确性。最后,我们使用2012年伊朗西北部Ahar-Varzaghan余震序列的真实数据验证了该模型。该模型准确地恢复了地震活动的关键空间模式,尽管有大量的数据缺失,结果与以前的高分辨率研究一致。这些发现证实,所提出的方法远远超出了综合设置,并为操作地震网络和快速危害评估提供了一种快速、可靠的替代方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Earthquake location and magnitude estimation using seismic arrival times pattern and gradient boosted decision trees
We present a machine learning approach for earthquake location and magnitude estimation based on seismic arrival time patterns, using Histogram-Based Gradient Boosting for its high accuracy and computational efficiency. The model is first evaluated using a synthetic earthquake bulletin that simulates realistic network geometry, station-event distributions, and incorporates a 3D velocity model for accurate travel-time computation. Input features include P and S arrival times and amplitudes, while targets consist of location, origin time, magnitude, and uncertainty measures (horizontal and depth errors, azimuthal gap). Model performance is evaluated using R2, Mean Absolute Error (MAE), and Median Absolute Error (MEDAE), demonstrating high accuracy across datasets with varying levels of completeness. Finally, we validate the model using real-world data from the Ahar-Varzaghan 2012 aftershock sequence in NW Iran. The model accurately recovers key spatial patterns of seismicity despite significant missing data, and the results align with previous high-resolution studies. These findings confirm that the proposed method generalizes well beyond synthetic settings and offers a fast, robust alternative for operational seismic networks and rapid hazard assessment.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信