基于车辆轨迹数据的驾驶员行为分类拓扑数据分析

IF 4.9
Debbie Indah , Judith Mwakalonge , Gurcan Comert , Saidi Siuhi , Hannah Musau , Eric Osei , Paul Omulokoli , Methusela Sulle , Denis Ruganuza , Nana Kankam Gyimah
{"title":"基于车辆轨迹数据的驾驶员行为分类拓扑数据分析","authors":"Debbie Indah ,&nbsp;Judith Mwakalonge ,&nbsp;Gurcan Comert ,&nbsp;Saidi Siuhi ,&nbsp;Hannah Musau ,&nbsp;Eric Osei ,&nbsp;Paul Omulokoli ,&nbsp;Methusela Sulle ,&nbsp;Denis Ruganuza ,&nbsp;Nana Kankam Gyimah","doi":"10.1016/j.mlwa.2025.100719","DOIUrl":null,"url":null,"abstract":"<div><div>With urbanization and rising vehicle numbers, road safety has become increasingly critical. Robust, trajectory-level risk assessment is essential for next-generation active safety systems, accident prevention, autonomous driving, and intelligent transportation networks. This paper presents a novel framework for driver behavior classification using Topological Data Analysis (TDA) — a mathematical approach for analyzing high-dimensional data — via persistent homology applied to vehicle trajectory data. Traditional methods often struggle with the complexity of such data, but TDA captures topological features that reveal subtle, meaningful behavioral patterns. Using the HighD dataset, we train a class-weighted XGBoost classifier on persistence image (PI) features, achieving 96.8% overall accuracy, macro-F<span><math><msub><mrow></mrow><mrow><mn>1</mn></mrow></msub></math></span> = 0.93, and retaining 87% F<span><math><msub><mrow></mrow><mrow><mn>1</mn></mrow></msub></math></span> on the minority Aggressive class. Unsupervised K-means clustering of the same PI features naturally separates the data into three behavioral clusters whose ANOVA-verified risk profiles align with the MOR-defined classes, confirming the behavioral relevance of the topological descriptors. These results provide empirical evidence that PI features capture safety-critical structure more effectively than raw kinematics and demonstrate the robustness and scalability of TDA for analyzing large, noisy datasets. The proposed approach shows strong potential for real-time driver monitoring, risk assessment, and data-driven transportation management, with implications for traffic safety, autonomous systems, and personalized insurance.</div></div>","PeriodicalId":74093,"journal":{"name":"Machine learning with applications","volume":"21 ","pages":"Article 100719"},"PeriodicalIF":4.9000,"publicationDate":"2025-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Topological data analysis for driver behavior classification driven by vehicle trajectory data\",\"authors\":\"Debbie Indah ,&nbsp;Judith Mwakalonge ,&nbsp;Gurcan Comert ,&nbsp;Saidi Siuhi ,&nbsp;Hannah Musau ,&nbsp;Eric Osei ,&nbsp;Paul Omulokoli ,&nbsp;Methusela Sulle ,&nbsp;Denis Ruganuza ,&nbsp;Nana Kankam Gyimah\",\"doi\":\"10.1016/j.mlwa.2025.100719\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>With urbanization and rising vehicle numbers, road safety has become increasingly critical. Robust, trajectory-level risk assessment is essential for next-generation active safety systems, accident prevention, autonomous driving, and intelligent transportation networks. This paper presents a novel framework for driver behavior classification using Topological Data Analysis (TDA) — a mathematical approach for analyzing high-dimensional data — via persistent homology applied to vehicle trajectory data. Traditional methods often struggle with the complexity of such data, but TDA captures topological features that reveal subtle, meaningful behavioral patterns. Using the HighD dataset, we train a class-weighted XGBoost classifier on persistence image (PI) features, achieving 96.8% overall accuracy, macro-F<span><math><msub><mrow></mrow><mrow><mn>1</mn></mrow></msub></math></span> = 0.93, and retaining 87% F<span><math><msub><mrow></mrow><mrow><mn>1</mn></mrow></msub></math></span> on the minority Aggressive class. Unsupervised K-means clustering of the same PI features naturally separates the data into three behavioral clusters whose ANOVA-verified risk profiles align with the MOR-defined classes, confirming the behavioral relevance of the topological descriptors. These results provide empirical evidence that PI features capture safety-critical structure more effectively than raw kinematics and demonstrate the robustness and scalability of TDA for analyzing large, noisy datasets. The proposed approach shows strong potential for real-time driver monitoring, risk assessment, and data-driven transportation management, with implications for traffic safety, autonomous systems, and personalized insurance.</div></div>\",\"PeriodicalId\":74093,\"journal\":{\"name\":\"Machine learning with applications\",\"volume\":\"21 \",\"pages\":\"Article 100719\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2025-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Machine learning with applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666827025001021\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machine learning with applications","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666827025001021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

随着城市化和车辆数量的增加,道路安全变得越来越重要。稳健的轨迹级风险评估对于下一代主动安全系统、事故预防、自动驾驶和智能交通网络至关重要。本文提出了一种新的驾驶员行为分类框架,该框架使用拓扑数据分析(TDA) -一种分析高维数据的数学方法-通过持久同构应用于车辆轨迹数据。传统的方法经常与这些数据的复杂性作斗争,但是TDA捕获了揭示微妙的、有意义的行为模式的拓扑特征。使用HighD数据集,我们在持久性图像(PI)特征上训练了一个类加权的XGBoost分类器,总体准确率达到96.8%,宏观F1 = 0.93,并且在少数激进类上保留了87%的F1。相同PI特征的无监督K-means聚类自然地将数据分为三个行为聚类,其anova验证的风险概况与摩尔定义的类一致,确认了拓扑描述符的行为相关性。这些结果提供了经验证据,证明PI特征比原始运动学更有效地捕获安全关键结构,并证明了TDA在分析大型嘈杂数据集时的鲁棒性和可扩展性。该方法在实时驾驶员监控、风险评估和数据驱动的交通管理方面具有巨大潜力,对交通安全、自动驾驶系统和个性化保险具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Topological data analysis for driver behavior classification driven by vehicle trajectory data
With urbanization and rising vehicle numbers, road safety has become increasingly critical. Robust, trajectory-level risk assessment is essential for next-generation active safety systems, accident prevention, autonomous driving, and intelligent transportation networks. This paper presents a novel framework for driver behavior classification using Topological Data Analysis (TDA) — a mathematical approach for analyzing high-dimensional data — via persistent homology applied to vehicle trajectory data. Traditional methods often struggle with the complexity of such data, but TDA captures topological features that reveal subtle, meaningful behavioral patterns. Using the HighD dataset, we train a class-weighted XGBoost classifier on persistence image (PI) features, achieving 96.8% overall accuracy, macro-F1 = 0.93, and retaining 87% F1 on the minority Aggressive class. Unsupervised K-means clustering of the same PI features naturally separates the data into three behavioral clusters whose ANOVA-verified risk profiles align with the MOR-defined classes, confirming the behavioral relevance of the topological descriptors. These results provide empirical evidence that PI features capture safety-critical structure more effectively than raw kinematics and demonstrate the robustness and scalability of TDA for analyzing large, noisy datasets. The proposed approach shows strong potential for real-time driver monitoring, risk assessment, and data-driven transportation management, with implications for traffic safety, autonomous systems, and personalized insurance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Machine learning with applications
Machine learning with applications Management Science and Operations Research, Artificial Intelligence, Computer Science Applications
自引率
0.00%
发文量
0
审稿时长
98 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信