Chengxin Chen , Hongfei Shi , Xiaoyan Cai , Liang Mao , Zhe Chen
{"title":"S-scheme CoWO4/CdIn2S4异质结增强了H2演化和HCHO去除的双功能光催化性能","authors":"Chengxin Chen , Hongfei Shi , Xiaoyan Cai , Liang Mao , Zhe Chen","doi":"10.1016/j.actphy.2025.100155","DOIUrl":null,"url":null,"abstract":"<div><div>Designing and establishing dual-functional S-scheme heterojunction photocatalysts with efficient separation of photoproduced carriers and intense oxidation/reduction capabilities holds immense practical value for their photocatalytic application in energy conversion and environmental purification. Herein, a novel series of <em>x</em>% CoWO<sub>4</sub>/CdIn<sub>2</sub>S<sub>4</sub> (<em>x</em>% reflects the weight ratio of CWO to CIS; <em>x</em> = 10, 20, 30, 40 and 50) composites have been systematically designed and synthesized <em>via</em> electrospinning technique and hydrothermal methods. Their photocatalytic properties were assessed through HCHO removal and H<sub>2</sub> generation under visible light. As anticipated, the optimized 30 % CWO/CIS heterojunction presented an outstanding H<sub>2</sub> generation performance of 865.14 μmol g<sup>−1</sup> h<sup>−1</sup> with AQE = 3.6 % at <em>λ</em> = 420 nm, and achieved a 69 % removal percentage for HCHO within 1 h. Meanwhile, the pathway of HCHO degradation was presented based on <em>in</em> <em>situ</em> diffuse reflectance infrared Fourier transform spectroscopy (<em>in</em> <em>situ</em> DRIFTS) technique. The great catalytic performance was primarily ascribed to the enhancement in the visible–light absorption, number of active sites, and the construction of S-scheme heterojunction. Furthermore, the S-scheme charge transfer mechanism for the CWO/CIS catalyst system has been confirmed by <em>in</em> <em>situ</em> X–ray photoelectron spectroscopy (<em>in</em> <em>situ</em> XPS), electron spin resonance data, radical capturing experiments, and density functional theory (DFT) calculations. This research contributes valuable understanding for the systematic design and development of bifunctional S-scheme heterojunctions for gaseous pollutants removal and H<sub>2</sub> production.</div></div>","PeriodicalId":6964,"journal":{"name":"物理化学学报","volume":"41 12","pages":"Article 100155"},"PeriodicalIF":13.5000,"publicationDate":"2025-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced bifunctional photocatalytic performances for H2 evolution and HCHO elimination with an S-scheme CoWO4/CdIn2S4 heterojunction\",\"authors\":\"Chengxin Chen , Hongfei Shi , Xiaoyan Cai , Liang Mao , Zhe Chen\",\"doi\":\"10.1016/j.actphy.2025.100155\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Designing and establishing dual-functional S-scheme heterojunction photocatalysts with efficient separation of photoproduced carriers and intense oxidation/reduction capabilities holds immense practical value for their photocatalytic application in energy conversion and environmental purification. Herein, a novel series of <em>x</em>% CoWO<sub>4</sub>/CdIn<sub>2</sub>S<sub>4</sub> (<em>x</em>% reflects the weight ratio of CWO to CIS; <em>x</em> = 10, 20, 30, 40 and 50) composites have been systematically designed and synthesized <em>via</em> electrospinning technique and hydrothermal methods. Their photocatalytic properties were assessed through HCHO removal and H<sub>2</sub> generation under visible light. As anticipated, the optimized 30 % CWO/CIS heterojunction presented an outstanding H<sub>2</sub> generation performance of 865.14 μmol g<sup>−1</sup> h<sup>−1</sup> with AQE = 3.6 % at <em>λ</em> = 420 nm, and achieved a 69 % removal percentage for HCHO within 1 h. Meanwhile, the pathway of HCHO degradation was presented based on <em>in</em> <em>situ</em> diffuse reflectance infrared Fourier transform spectroscopy (<em>in</em> <em>situ</em> DRIFTS) technique. The great catalytic performance was primarily ascribed to the enhancement in the visible–light absorption, number of active sites, and the construction of S-scheme heterojunction. Furthermore, the S-scheme charge transfer mechanism for the CWO/CIS catalyst system has been confirmed by <em>in</em> <em>situ</em> X–ray photoelectron spectroscopy (<em>in</em> <em>situ</em> XPS), electron spin resonance data, radical capturing experiments, and density functional theory (DFT) calculations. This research contributes valuable understanding for the systematic design and development of bifunctional S-scheme heterojunctions for gaseous pollutants removal and H<sub>2</sub> production.</div></div>\",\"PeriodicalId\":6964,\"journal\":{\"name\":\"物理化学学报\",\"volume\":\"41 12\",\"pages\":\"Article 100155\"},\"PeriodicalIF\":13.5000,\"publicationDate\":\"2025-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"物理化学学报\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1000681825001110\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"物理化学学报","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1000681825001110","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Enhanced bifunctional photocatalytic performances for H2 evolution and HCHO elimination with an S-scheme CoWO4/CdIn2S4 heterojunction
Designing and establishing dual-functional S-scheme heterojunction photocatalysts with efficient separation of photoproduced carriers and intense oxidation/reduction capabilities holds immense practical value for their photocatalytic application in energy conversion and environmental purification. Herein, a novel series of x% CoWO4/CdIn2S4 (x% reflects the weight ratio of CWO to CIS; x = 10, 20, 30, 40 and 50) composites have been systematically designed and synthesized via electrospinning technique and hydrothermal methods. Their photocatalytic properties were assessed through HCHO removal and H2 generation under visible light. As anticipated, the optimized 30 % CWO/CIS heterojunction presented an outstanding H2 generation performance of 865.14 μmol g−1 h−1 with AQE = 3.6 % at λ = 420 nm, and achieved a 69 % removal percentage for HCHO within 1 h. Meanwhile, the pathway of HCHO degradation was presented based on insitu diffuse reflectance infrared Fourier transform spectroscopy (insitu DRIFTS) technique. The great catalytic performance was primarily ascribed to the enhancement in the visible–light absorption, number of active sites, and the construction of S-scheme heterojunction. Furthermore, the S-scheme charge transfer mechanism for the CWO/CIS catalyst system has been confirmed by insitu X–ray photoelectron spectroscopy (insitu XPS), electron spin resonance data, radical capturing experiments, and density functional theory (DFT) calculations. This research contributes valuable understanding for the systematic design and development of bifunctional S-scheme heterojunctions for gaseous pollutants removal and H2 production.