基于金鹰的汽车保险欺诈检测混合深度学习模型

Kavikumar Jacob , Shubanath Thejani binti Mohammed Sayeed Shafaraz , D. Nagarajan
{"title":"基于金鹰的汽车保险欺诈检测混合深度学习模型","authors":"Kavikumar Jacob ,&nbsp;Shubanath Thejani binti Mohammed Sayeed Shafaraz ,&nbsp;D. Nagarajan","doi":"10.1016/j.dajour.2025.100619","DOIUrl":null,"url":null,"abstract":"<div><div>Insurance fraud detection is a significant problem in the insurance industry, producing immeasurable losses. Conventional insurance fraud detection models depend heavily on experts’ knowledge, and accurately estimating fraud when the data and the claim data are enormous is a complex and difficult task. This study proposes an efficient and effective Automobile Insurance Claim Fraud Detection (AICFD) approach. The feature selection process in the proposed approach uses Golden Eagle-Assisted Optimisation (GEAO) to efficiently select the subset of features. The obtained features are utilised for fraud detection using the deep learning model of hybrid Bidirectional Encoder Representation-Long Short-Term Memory (BERT-LSTM). The experimental analysis using the carclaim.txt dataset achieved better accuracy and recall of 99.02% and 99.1%.</div></div>","PeriodicalId":100357,"journal":{"name":"Decision Analytics Journal","volume":"16 ","pages":"Article 100619"},"PeriodicalIF":0.0000,"publicationDate":"2025-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A golden eagle-based hybrid deep learning model for automobile insurance fraud detection\",\"authors\":\"Kavikumar Jacob ,&nbsp;Shubanath Thejani binti Mohammed Sayeed Shafaraz ,&nbsp;D. Nagarajan\",\"doi\":\"10.1016/j.dajour.2025.100619\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Insurance fraud detection is a significant problem in the insurance industry, producing immeasurable losses. Conventional insurance fraud detection models depend heavily on experts’ knowledge, and accurately estimating fraud when the data and the claim data are enormous is a complex and difficult task. This study proposes an efficient and effective Automobile Insurance Claim Fraud Detection (AICFD) approach. The feature selection process in the proposed approach uses Golden Eagle-Assisted Optimisation (GEAO) to efficiently select the subset of features. The obtained features are utilised for fraud detection using the deep learning model of hybrid Bidirectional Encoder Representation-Long Short-Term Memory (BERT-LSTM). The experimental analysis using the carclaim.txt dataset achieved better accuracy and recall of 99.02% and 99.1%.</div></div>\",\"PeriodicalId\":100357,\"journal\":{\"name\":\"Decision Analytics Journal\",\"volume\":\"16 \",\"pages\":\"Article 100619\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Decision Analytics Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S277266222500075X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Decision Analytics Journal","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S277266222500075X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

保险欺诈侦查是保险业面临的重大问题,造成的损失不可估量。传统的保险欺诈检测模型严重依赖于专家的知识,当数据和索赔数据巨大时,准确估计欺诈是一项复杂而艰巨的任务。本研究提出一种高效且有效的汽车保险理赔欺诈侦测方法。该方法的特征选择过程使用金鹰辅助优化(GEAO)来有效地选择特征子集。利用混合双向编码器表示-长短期记忆(BERT-LSTM)的深度学习模型,将获得的特征用于欺诈检测。使用carclaim.txt数据集进行实验分析,准确率和召回率分别为99.02%和99.1%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A golden eagle-based hybrid deep learning model for automobile insurance fraud detection

A golden eagle-based hybrid deep learning model for automobile insurance fraud detection
Insurance fraud detection is a significant problem in the insurance industry, producing immeasurable losses. Conventional insurance fraud detection models depend heavily on experts’ knowledge, and accurately estimating fraud when the data and the claim data are enormous is a complex and difficult task. This study proposes an efficient and effective Automobile Insurance Claim Fraud Detection (AICFD) approach. The feature selection process in the proposed approach uses Golden Eagle-Assisted Optimisation (GEAO) to efficiently select the subset of features. The obtained features are utilised for fraud detection using the deep learning model of hybrid Bidirectional Encoder Representation-Long Short-Term Memory (BERT-LSTM). The experimental analysis using the carclaim.txt dataset achieved better accuracy and recall of 99.02% and 99.1%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.90
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信