{"title":"求解稳态Navier-Stokes-Darcy问题的两种基于局部多项式压力投影的稳定有限元方法","authors":"Liyun Zuo , Guangzhi Du","doi":"10.1016/j.finel.2025.104420","DOIUrl":null,"url":null,"abstract":"<div><div>This study presents two stabilized finite element methods based on local polynomial pressure projections for the mixed steady-state Navier–Stokes–Darcy problem by utilizing the equal order finite element pairs, the <span><math><msub><mrow><mi>P</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span>-<span><math><msub><mrow><mi>P</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span>-<span><math><msub><mrow><mi>P</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> and <span><math><msub><mrow><mi>P</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>-<span><math><msub><mrow><mi>P</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>-<span><math><msub><mrow><mi>P</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> element pairs, for approximating the fluid velocity, kinematic pressure and dynamic pressure, respectively. The presented stabilized methods possess many chief characteristics, for instance, parameter free, simple calculation, element level implementation. The optimal error estimates are established. Finally, some comprehensively numerical tests are reported to examine the efficiency and robustness of the proposed algorithms.</div></div>","PeriodicalId":56133,"journal":{"name":"Finite Elements in Analysis and Design","volume":"251 ","pages":"Article 104420"},"PeriodicalIF":3.5000,"publicationDate":"2025-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Two stabilized finite element methods based on local polynomial pressure projection for the steady-state Navier–Stokes–Darcy problem\",\"authors\":\"Liyun Zuo , Guangzhi Du\",\"doi\":\"10.1016/j.finel.2025.104420\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study presents two stabilized finite element methods based on local polynomial pressure projections for the mixed steady-state Navier–Stokes–Darcy problem by utilizing the equal order finite element pairs, the <span><math><msub><mrow><mi>P</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span>-<span><math><msub><mrow><mi>P</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span>-<span><math><msub><mrow><mi>P</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> and <span><math><msub><mrow><mi>P</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>-<span><math><msub><mrow><mi>P</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>-<span><math><msub><mrow><mi>P</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> element pairs, for approximating the fluid velocity, kinematic pressure and dynamic pressure, respectively. The presented stabilized methods possess many chief characteristics, for instance, parameter free, simple calculation, element level implementation. The optimal error estimates are established. Finally, some comprehensively numerical tests are reported to examine the efficiency and robustness of the proposed algorithms.</div></div>\",\"PeriodicalId\":56133,\"journal\":{\"name\":\"Finite Elements in Analysis and Design\",\"volume\":\"251 \",\"pages\":\"Article 104420\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-08-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Finite Elements in Analysis and Design\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0168874X2500109X\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Finite Elements in Analysis and Design","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168874X2500109X","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Two stabilized finite element methods based on local polynomial pressure projection for the steady-state Navier–Stokes–Darcy problem
This study presents two stabilized finite element methods based on local polynomial pressure projections for the mixed steady-state Navier–Stokes–Darcy problem by utilizing the equal order finite element pairs, the -- and -- element pairs, for approximating the fluid velocity, kinematic pressure and dynamic pressure, respectively. The presented stabilized methods possess many chief characteristics, for instance, parameter free, simple calculation, element level implementation. The optimal error estimates are established. Finally, some comprehensively numerical tests are reported to examine the efficiency and robustness of the proposed algorithms.
期刊介绍:
The aim of this journal is to provide ideas and information involving the use of the finite element method and its variants, both in scientific inquiry and in professional practice. The scope is intentionally broad, encompassing use of the finite element method in engineering as well as the pure and applied sciences. The emphasis of the journal will be the development and use of numerical procedures to solve practical problems, although contributions relating to the mathematical and theoretical foundations and computer implementation of numerical methods are likewise welcomed. Review articles presenting unbiased and comprehensive reviews of state-of-the-art topics will also be accommodated.