交替有限自动机的存在与普遍宽度

IF 1 4区 计算机科学 Q3 COMPUTER SCIENCE, THEORY & METHODS
Yo-Sub Han , Sungmin Kim , Sang-Ki Ko , Kai Salomaa
{"title":"交替有限自动机的存在与普遍宽度","authors":"Yo-Sub Han ,&nbsp;Sungmin Kim ,&nbsp;Sang-Ki Ko ,&nbsp;Kai Salomaa","doi":"10.1016/j.ic.2025.105337","DOIUrl":null,"url":null,"abstract":"<div><div>The existential width of an alternating finite automaton (AFA) <em>A</em> on a string <em>w</em> is, roughly speaking, the number of nondeterministic choices that <em>A</em> uses in an accepting computation on <em>w</em> that uses least nondeterminism. The universal width of <em>A</em> on string <em>w</em> is the least number of parallel branches an accepting computation of <em>A</em> on <em>w</em> needs to have. The existential or universal width of <em>A</em> is said to be finite if it is bounded for all accepted strings. We show that finiteness of existential and universal width of an AFA is decidable and at least PSPACE-hard. We consider the problem of deciding whether the existential or universal width is bounded by a given integer. We show that the problem is PSPACE-complete for AFAs where the number of transitions defined for a given universal state and input symbol is bounded by a constant.</div></div>","PeriodicalId":54985,"journal":{"name":"Information and Computation","volume":"306 ","pages":"Article 105337"},"PeriodicalIF":1.0000,"publicationDate":"2025-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Existential and universal width of alternating finite automata\",\"authors\":\"Yo-Sub Han ,&nbsp;Sungmin Kim ,&nbsp;Sang-Ki Ko ,&nbsp;Kai Salomaa\",\"doi\":\"10.1016/j.ic.2025.105337\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The existential width of an alternating finite automaton (AFA) <em>A</em> on a string <em>w</em> is, roughly speaking, the number of nondeterministic choices that <em>A</em> uses in an accepting computation on <em>w</em> that uses least nondeterminism. The universal width of <em>A</em> on string <em>w</em> is the least number of parallel branches an accepting computation of <em>A</em> on <em>w</em> needs to have. The existential or universal width of <em>A</em> is said to be finite if it is bounded for all accepted strings. We show that finiteness of existential and universal width of an AFA is decidable and at least PSPACE-hard. We consider the problem of deciding whether the existential or universal width is bounded by a given integer. We show that the problem is PSPACE-complete for AFAs where the number of transitions defined for a given universal state and input symbol is bounded by a constant.</div></div>\",\"PeriodicalId\":54985,\"journal\":{\"name\":\"Information and Computation\",\"volume\":\"306 \",\"pages\":\"Article 105337\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2025-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Information and Computation\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0890540125000732\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information and Computation","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0890540125000732","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

摘要

字符串w上的交替有限自动机(AFA) A的存在宽度,粗略地说,是A在使用最少不确定性的w上的接受计算中使用的不确定性选择的数量。字符串w上A的通用宽度是A在w上的可接受计算所需的最少并行分支数。如果A的存在或普遍宽度对于所有可接受的字符串都是有界的,那么它就是有限的。我们证明了一个AFA的存在和普遍宽度的有限性是可决定的,并且至少是PSPACE-hard的。我们考虑确定存在宽度或普遍宽度是否由给定整数限定的问题。我们证明了AFAs的问题是pspace完备的,其中为给定的通用状态和输入符号定义的转换数量由一个常数限定。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Existential and universal width of alternating finite automata
The existential width of an alternating finite automaton (AFA) A on a string w is, roughly speaking, the number of nondeterministic choices that A uses in an accepting computation on w that uses least nondeterminism. The universal width of A on string w is the least number of parallel branches an accepting computation of A on w needs to have. The existential or universal width of A is said to be finite if it is bounded for all accepted strings. We show that finiteness of existential and universal width of an AFA is decidable and at least PSPACE-hard. We consider the problem of deciding whether the existential or universal width is bounded by a given integer. We show that the problem is PSPACE-complete for AFAs where the number of transitions defined for a given universal state and input symbol is bounded by a constant.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Information and Computation
Information and Computation 工程技术-计算机:理论方法
CiteScore
2.30
自引率
0.00%
发文量
119
审稿时长
140 days
期刊介绍: Information and Computation welcomes original papers in all areas of theoretical computer science and computational applications of information theory. Survey articles of exceptional quality will also be considered. Particularly welcome are papers contributing new results in active theoretical areas such as -Biological computation and computational biology- Computational complexity- Computer theorem-proving- Concurrency and distributed process theory- Cryptographic theory- Data base theory- Decision problems in logic- Design and analysis of algorithms- Discrete optimization and mathematical programming- Inductive inference and learning theory- Logic & constraint programming- Program verification & model checking- Probabilistic & Quantum computation- Semantics of programming languages- Symbolic computation, lambda calculus, and rewriting systems- Types and typechecking
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信